950 resultados para Unsaturated bonds
Resumo:
Nanostructured tungsten oxide thin film based gas sensors have been developed by thermal evaporation method to detect CO at low operating temperatures. The influence of Fe-doping and annealing heat treatment on microstructural and gas sensing properties of these films have been investigated. Fe was incorporated in WO3 film by co-evaporation and annealing was performed at 400oC for 2 hours in air. AFM analysis revealed a grain size of about 10-15 nm in all the films. GIXRD analysis showed that as-deposited films are amorphous and annealing at 400oC improved the crystallinity. Raman and XRD analysis indicated that Fe is incorporated in the WO3 matrix as a substitutional impurity, resulting in shorter O-W-O bonds and lattice cell parameters. Doping with Fe contributed significantly towards CO sensing performance of WO3 thin films. A good response to various concentrations (10-1000 ppm) of CO has been achieved with 400oC annealed Fe-doped WO3 film at a low operating temperature of 150oC.
Resumo:
Proteases regulate a spectrum of diverse physiological processes, and dysregulation of proteolytic activity drives a plethora of pathological conditions. Understanding protease function is essential to appreciating many aspects of normal physiology and progression of disease. Consequently, development of potent and specific inhibitors of proteolytic enzymes is vital to provide tools for the dissection of protease function in biological systems and for the treatment of diseases linked to aberrant proteolytic activity. The studies in this thesis describe the rational design of potent inhibitors of three proteases that are implicated in disease development. Additionally, key features of the interaction of proteases and their cognate inhibitors or substrates are analysed and a series of rational inhibitor design principles are expounded and tested. Rational design of protease inhibitors relies on a comprehensive understanding of protease structure and biochemistry. Analysis of known protease cleavage sites in proteins and peptides is a commonly used source of such information. However, model peptide substrate and protein sequences have widely differing levels of backbone constraint and hence can adopt highly divergent structures when binding to a protease’s active site. This may result in identical sequences in peptides and proteins having different conformations and diverse spatial distribution of amino acid functionalities. Regardless of this, protein and peptide cleavage sites are often regarded as being equivalent. One of the key findings in the following studies is a definitive demonstration of the lack of equivalence between these two classes of substrate and invalidation of the common practice of using the sequences of model peptide substrates to predict cleavage of proteins in vivo. Another important feature for protease substrate recognition is subsite cooperativity. This type of cooperativity is commonly referred to as protease or substrate binding subsite cooperativity and is distinct from allosteric cooperativity, where binding of a molecule distant from the protease active site affects the binding affinity of a substrate. Subsite cooperativity may be intramolecular where neighbouring residues in substrates are interacting, affecting the scissile bond’s susceptibility to protease cleavage. Subsite cooperativity can also be intermolecular where a particular residue’s contribution to binding affinity changes depending on the identity of neighbouring amino acids. Although numerous studies have identified subsite cooperativity effects, these findings are frequently ignored in investigations probing subsite selectivity by screening against diverse combinatorial libraries of peptides (positional scanning synthetic combinatorial library; PS-SCL). This strategy for determining cleavage specificity relies on the averaged rates of hydrolysis for an uncharacterised ensemble of peptide sequences, as opposed to the defined rate of hydrolysis of a known specific substrate. Further, since PS-SCL screens probe the preference of the various protease subsites independently, this method is inherently unable to detect subsite cooperativity. However, mean hydrolysis rates from PS-SCL screens are often interpreted as being comparable to those produced by single peptide cleavages. Before this study no large systematic evaluation had been made to determine the level of correlation between protease selectivity as predicted by screening against a library of combinatorial peptides and cleavage of individual peptides. This subject is specifically explored in the studies described here. In order to establish whether PS-SCL screens could accurately determine the substrate preferences of proteases, a systematic comparison of data from PS-SCLs with libraries containing individually synthesised peptides (sparse matrix library; SML) was carried out. These SML libraries were designed to include all possible sequence combinations of the residues that were suggested to be preferred by a protease using the PS-SCL method. SML screening against the three serine proteases kallikrein 4 (KLK4), kallikrein 14 (KLK14) and plasmin revealed highly preferred peptide substrates that could not have been deduced by PS-SCL screening alone. Comparing protease subsite preference profiles from screens of the two types of peptide libraries showed that the most preferred substrates were not detected by PS SCL screening as a consequence of intermolecular cooperativity being negated by the very nature of PS SCL screening. Sequences that are highly favoured as result of intermolecular cooperativity achieve optimal protease subsite occupancy, and thereby interact with very specific determinants of the protease. Identifying these substrate sequences is important since they may be used to produce potent and selective inhibitors of protolytic enzymes. This study found that highly favoured substrate sequences that relied on intermolecular cooperativity allowed for the production of potent inhibitors of KLK4, KLK14 and plasmin. Peptide aldehydes based on preferred plasmin sequences produced high affinity transition state analogue inhibitors for this protease. The most potent of these maintained specificity over plasma kallikrein (known to have a very similar substrate preference to plasmin). Furthermore, the efficiency of this inhibitor in blocking fibrinolysis in vitro was comparable to aprotinin, which previously saw clinical use to reduce perioperative bleeding. One substrate sequence particularly favoured by KLK4 was substituted into the 14 amino acid, circular sunflower trypsin inhibitor (SFTI). This resulted in a highly potent and selective inhibitor (SFTI-FCQR) which attenuated protease activated receptor signalling by KLK4 in vitro. Moreover, SFTI-FCQR and paclitaxel synergistically reduced growth of ovarian cancer cells in vitro, making this inhibitor a lead compound for further therapeutic development. Similar incorporation of a preferred KLK14 amino acid sequence into the SFTI scaffold produced a potent inhibitor for this protease. However, the conformationally constrained SFTI backbone enforced a different intramolecular cooperativity, which masked a KLK14 specific determinant. As a consequence, the level of selectivity achievable was lower than that found for the KLK4 inhibitor. Standard mechanism inhibitors such as SFTI rely on a stable acyl-enzyme intermediate for high affinity binding. This is achieved by a conformationally constrained canonical binding loop that allows for reformation of the scissile peptide bond after cleavage. Amino acid substitutions within the inhibitor to target a particular protease may compromise structural determinants that support the rigidity of the binding loop and thereby prevent the engineered inhibitor reaching its full potential. An in silico analysis was carried out to examine the potential for further improvements to the potency and selectivity of the SFTI-based KLK4 and KLK14 inhibitors. Molecular dynamics simulations suggested that the substitutions within SFTI required to target KLK4 and KLK14 had compromised the intramolecular hydrogen bond network of the inhibitor and caused a concomitant loss of binding loop stability. Furthermore in silico amino acid substitution revealed a consistent correlation between a higher frequency of formation and the number of internal hydrogen bonds of SFTI-variants and lower inhibition constants. These predictions allowed for the production of second generation inhibitors with enhanced binding affinity toward both targets and highlight the importance of considering intramolecular cooperativity effects when engineering proteins or circular peptides to target proteases. The findings from this study show that although PS-SCLs are a useful tool for high throughput screening of approximate protease preference, later refinement by SML screening is needed to reveal optimal subsite occupancy due to cooperativity in substrate recognition. This investigation has also demonstrated the importance of maintaining structural determinants of backbone constraint and conformation when engineering standard mechanism inhibitors for new targets. Combined these results show that backbone conformation and amino acid cooperativity have more prominent roles than previously appreciated in determining substrate/inhibitor specificity and binding affinity. The three key inhibitors designed during this investigation are now being developed as lead compounds for cancer chemotherapy, control of fibrinolysis and cosmeceutical applications. These compounds form the basis of a portfolio of intellectual property which will be further developed in the coming years.
Resumo:
In this video, phrases sourced from social networking websites are reformatted into a slowly rotating mandala form. As the text changes colour, an abstract, atmospheric soundtrack develops. “In the Beyond” examines how we construct and communicate notions of identity. It mixes language gleaned from social networks, and fuses them with a mandala form. Drawing on Zygmunt Bauman’s theoretical work on “liquid modernity”, this work questions how and where we find space for contemplation and reflection in a contemporary context increasingly defined by temporary social bonds and consumer choices.
Resumo:
The multianion mineral gartrellite PbCu(Fe3+,Cu)(AsO4)2(OH,H2O)2 has been studied by a combination of Raman and infrared spectroscopy. The vibrational spectra of two gartrellite samples from Durango and Ashburton Downs were compared. Gartrellite is one of the tsumcorite mineral group based upon arsenate and sulphate anions. Crystal symmetry is either triclinic in the case of an ordered occupation of two cationic sites, triclinic due to ordering of the H bonds in the case of species with 2 water molecules per formula unit, or monoclinic in the other cases. Characteristic Raman spectra of the minerals enable the assignment of the bands to specific vibrational modes. These spectra are related to the structure of gartrellite. The position of the hydroxyl and water stretching vibrations are related to the strength of the hydrogen bond formed between the OH unit and the AsO4 anion.
Resumo:
In the title salt, racemic C6H12N2O+ C8H11O4- from the reaction of cis-cyclohexane-1,2-dicarboxylic anhydride with isonipecotamide, the cations are linked into duplex chain substructures through both centrosymmetric cyclic head-to-head 'amide motif' hydrogen-bonding associations [graph set R2/2(8)] and 'side-by-side' R2/2(14) associations. The anions are incorporated into the chains through cyclic R3/4(10) interactions involving amide and piperidinium N-H...O(carboxyl) hydrogen bonds which, together with inter-anion carboxylic acid O-H...O(carboxyl) hydrogen bonds, give a two-dimensional layered structure extending along (011).
Resumo:
The surface amorphous layer of articular cartilage is of primary importance to its load-bearing and lubrication function. This lipid-filled layer is degraded/disrupted or eliminated when cartilage degenerates due to diseases. This article examines further the characteristic of this surface overlay using a combination of microscopy and imaging methods to evaluate the hypothesis that the surface of articular cartilage can be repaired by exposing degraded cartilage to aqueous synthetic lipid mixtures. The preliminary results demonstrate that it is possible to create a new surface layer of phospholipids on the surface of cartilage following artificial lipid removal, but such a layer does not possess enough mechanical strength for physiological function when created with either unsaturated palmitoyloleoyl- phosphatidylcholine or saturated dipalmitoyl-phosphatidylcholine component of joint lipid composition alone. We conclude that this may be due to low structural cohesivity, inadequate time of exposure, and the mix/content of lipid in the incubation environment.
Resumo:
In this wall-mounted sculpture, a car stereo is mounted into a photographic image of a redwood forest. It plays a sparse and evocative guitar soundtrack. The supporting cabinet is finished with timber veneer to resemble a retro home stereo or piece of designer furniture. This work examines how we construct, represent and deploy notions of nature in our contemporary lives. It mixes the languages of furniture design, landscape photography and sculpture. Drawing on Zygmunt Bauman’s theoretical work on “liquid modernity”, this work questions how and where we find space for contemplation and reflection in a contemporary context increasingly defined by temporary social bonds and consumer choices.
Resumo:
In this video, words emerge out of an abstract, ‘digital’, animated horizon line. The words are accompanied by a female voice-over who narrates a seductive relaxation and visualization activity. This work examines the nature of consciousness and identity in a contemporary context. It mixes the languages of meditation, new age philosophy and pop-psychology. Drawing on Zygmunt Bauman’s theoretical work on “liquid modernity”, this work questions how and where we find space for contemplation and reflection in a contemporary context increasingly defined by temporary social bonds and consumer choices.
Resumo:
In this freestanding sculpture, domestic ‘in-wall’ speakers are mounted in custom-built cabinets. The speakers play a calming stock music soundtrack. The cabinets are faced with photographic mural wallpaper of a stereotypical waterfall scene. This work examines how we construct, represent and deploy notions of nature in our contemporary lives. It mixes the languages of furniture design, landscape photography and sculpture. Drawing on Zygmunt Bauman’s theoretical work on “liquid modernity”, this work questions how and where we find space for contemplation and reflection in a contemporary context increasingly defined by temporary social bonds and consumer choices.
Resumo:
In this wall-mounted sculpture, speakers are mounted into a shelf-like object finished with timber veneer. The speakers play a corny groove stock music soundtrack. On top of the shelf sits a digital photographic image approximating a fireplace floating against a colour-gradient background. This work examines how we construct, represent and deploy notions of nature in our contemporary lives. It mixes the languages of furniture design, landscape photography, digital graphics and sculpture. Drawing on Zygmunt Bauman’s theoretical work on “liquid modernity”, this work questions how and where we find space for contemplation and reflection in a contemporary context increasingly defined by temporary social bonds and consumer choices.
Resumo:
Solids are widely identified as a carrier of harmful pollutants in stormwater runoff exerting a significant risk to receiving waters. This paper outlines the findings of an in-depth investigation on heavy metal adsorption to solids surfaces. Pollutant build-up samples collected from sixteen road sites in residential, industrial and commercial land uses were separated into four particle size ranges and analysed for a range of physico-chemical parameters and nine heavy metals including Iron (Fe), Aluminum (Al), Lead (Pb), Zinc (Zn), Cadmium (Cd), Chromium (Cr), Manganese (Mn), Nickel (Ni) and Copper (Cu). High specific surface area (SSA) and total organic carbon (TOC) content in finer particle size ranges was noted, thus confirming strong correlations with heavy metals. Based on their physico-chemical characteristics, two different types of solids originating from traffic and soil sources were identified. Solids generated by traffic were associated with high loads of heavy metals such as Cd and Cr with strong correlation with SSA. This suggested the existence of surface dependent bonds such as cation exchange between heavy metals and solids. In contrast, Fe, Al and Mn which can be attributed to soil inputs showed strong correlation with TOC suggesting strong bonds such as chemsorption. Zn was found to be primarily attached to solids by bonding with the oxides of Fe, Al and Mn. The data analysis also confirmed the predominance of the finer fraction, with 70% of the solids being finer than 150 µm and containing 60% of the heavy metal pollutant load.
Resumo:
In this wall-mounted sculpture, speakers are mounted into a timber-veneered cabinet. The speakers play a dark, searching soundtrack. Also mounted on the cabinet is a photographic image of a rocky gully in the American desert. This work examines how we construct, represent and deploy notions of nature in our contemporary lives. It mixes the languages of furniture design, landscape photography and sculpture. Drawing on Zygmunt Bauman’s theoretical work on “liquid modernity”, this work questions how and where we find space for contemplation and reflection in a contemporary context increasingly defined by temporary social bonds and consumer choices.
Resumo:
In this video, an abstract kaleidoscopic pattern slowly morphs and changes colour. It is accompanied by a male voice performing a word association or stream-of-consciousness activity. This work examines the nature of consciousness and identity in a contemporary context. It mixes the languages of meditation, new age philosophy and pop-psychology. Drawing on Zygmunt Bauman’s theoretical work on “liquid modernity”, this work questions how and where we find space for contemplation in a contemporary context increasingly defined by temporary social bonds, consumer choices and private anxieties.
Resumo:
Nekoite Ca3Si6O15•7H2O and okenite Ca10Si18O46•18H2O are both hydrated calcium silicates found respectively in contact metamorphosed limestone and in association with zeolites from the alteration of basalts. The minerals form two-Dimensional infinite sheets with other than six-membered rings with 3-, 4-, or 5-membered rings and 8-membered rings. The two minerals have been characterised by Raman, near-infrared and infrared spectroscopy. The Raman spectrum of nekoite is characterised by two sharp peaks at 1061 and 1092 cm-1 with bands of lesser intensity at 974, 994, 1023 and 1132 cm-1. The Raman spectrum of okenite shows an intense single Raman band at 1090 cm-1 with a shoulder band at 1075 cm-1.These bands are assigned to the SiO stretching vibrations of Si2O5 units. Raman water stretching bands of nekoite are observed at 3071, 3380, 3502 and 3567 cm-1. Raman spectrum of okenite shows water stretching bands at 3029, 3284, 3417, 3531 and 3607 cm-1. NIR spectra of the two minerals are subtly different inferring water with different hydrogen bond strengths. By using a Libowitzky empirical formula, hydrogen bond distances based upon these OH stretching vibrations. Two types of hydrogen bonds are distinguished: strong hydrogen bonds associated with structural water and weaker hydrogen bonds assigned to space filling water molecules.
Resumo:
The molecular structure of the mixed anion mineral Clinotyrolite Ca2Cu9[(As,S)O4]4(OH)10•10(H2O) has been determined by the combination of Raman and infrared spectroscopy. Characteristic bands associated with arsenate, sulphate and hydroxyl units are identified. Broad bands in the OH stretching region are observed and are resolved into component bands. Estimates of hydrogen bond distances were made using a Libowitzky function and both short and long hydrogen bonds are identified. Two intense Raman bands at 842 and ~796 cm-1 are assigned to the ν1 (AsO4)3- symmetric stretching and ν3 (AsO4)3- antisymmetric stretching modes. The comparatively sharp Raman band at 980 cm-1 is assigned to the ν1 (SO4)2- symmetric stretching mode and a broad Raman spectral profile centred upon 1100 cm-1 is attributed to the ν3 (SO4)2- antisymmetric stretching mode.