977 resultados para Uniform Surface Heat Flux
Resumo:
For nearly 100 years, the flotation plant metallurgist has often wondered what is happening 'beneath the froth'. To assist in unravelling this mystery, new technology has been developed as part of the Australian Mineral Industries Research Association (AMIRA) P9 project, to measure gas dispersion characteristics (such as gas hold-up, superficial gas velocity and bubble size) in industrial flotation cells. These measurements have been conducted in a large number of cells of different types and sizes by researchers from the Julius Kruttschnitt Mineral Research Centre (JKMRC) and JKTech. A large database has been developed and the contents of this database are described in this paper. Typical cell characterization measurements show a wide spread in values, even in the same cell types and sizes performing similar duties. In conventional flotation cells, the typical gas hold-up values range from 3% to 20%, bubble sizes range between I and 2 mm, and superficial gas velocity ranges from 1 to 2.5 cm/s. The ranges of cell characterization measurements given in this paper will enable plant personnel to compare their operation to other similar types of operations from around Australia and the rest of the world, giving opportunities for further improvement to flotation plant operations. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The suction profile of a desiccating soil is dependent on the water table depth, the soil-water retention characteristics, and the climatic conditions. In this paper, an unsaturated flow model, which simulates both liquid and vapour flow, was used to investigate the effects of varying the water table depth and the evaporation rate on the evaporative fluxes from a desiccating tailings deposit under steady-state conditions. Results obtained showed that at a critical evaporation rate, beyond which evaporation is no longer dictated by climatic conditions, the matric suction profiles remain basically unchanged. The critical evaporation rate varies inversely with the water table depth. It is associated with the maximum evaporative flux that might be extracted from a soil at steady-state conditions. The time required to establish steady-state conditions is directly proportional to the water table depth, and it acquires a maximum value at the critical evaporation rate. A detailed investigation of the movement of the drying front demonstrated the significance of attaining a matric suction of about 3000 kPa on the contribution to flow in the vapour phase.
Resumo:
We investigate the problem of determining the stationary temperature field on an inclusion from given Cauchy data on an accessible exterior boundary. On this accessible part the temperature (or the heat flux) is known, and, additionally, on a portion of this exterior boundary the heat flux (or temperature) is also given. We propose a direct boundary integral approach in combination with Tikhonov regularization for the stable determination of the temperature and flux on the inclusion. To determine these quantities on the inclusion, boundary integral equations are derived using Green’s functions, and properties of these equations are shown in an L2-setting. An effective way of discretizing these boundary integral equations based on the Nystr¨om method and trigonometric approximations, is outlined. Numerical examples are included, both with exact and noisy data, showing that accurate approximations can be obtained with small computational effort, and the accuracy is increasing with the length of the portion of the boundary where the additionally data is given.
Resumo:
We consider the problem of reconstruction of the temperature from knowledge of the temperature and heat flux on a part of the boundary of a bounded planar domain containing corner points. An iterative method is proposed involving the solution of mixed boundary value problems for the heat equation (with time-dependent conductivity). These mixed problems are shown to be well-posed in a weighted Sobolev space.
Resumo:
In this study, we investigate the problem of reconstruction of a stationary temperature field from given temperature and heat flux on a part of the boundary of a semi-infinite region containing an inclusion. This situation can be modelled as a Cauchy problem for the Laplace operator and it is an ill-posed problem in the sense of Hadamard. We propose and investigate a Landweber-Fridman type iterative method, which preserve the (stationary) heat operator, for the stable reconstruction of the temperature field on the boundary of the inclusion. In each iteration step, mixed boundary value problems for the Laplace operator are solved in the semi-infinite region. Well-posedness of these problems is investigated and convergence of the procedures is discussed. For the numerical implementation of these mixed problems an efficient boundary integral method is proposed which is based on the indirect variant of the boundary integral approach. Using this approach the mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing that stable and accurate reconstructions of the temperature field on the boundary of the inclusion can be obtained also in the case of noisy data. These results are compared with those obtained with the alternating iterative method.
Resumo:
The induced lenses in the Yb:YAG rods and disks end-pumped by a Gaussian beam were analyzed both analytically and numerically. The thermally assisted mechanisms of the lens formation were considered to include: the conventional volume thermal index changes ("dn/dT"), the bulging of end faces, the photoelastic effect, and the bending (for a disk). The heat conduction equations (with an axial heat flux for a disk and a radial heat flux for a rod), and quasi-static thermoelastic equations (in the plane-stress approximation with free boundary conditions) were solved to find the thermal lens power. The population rate equation with saturation (by amplified spontaneous emission or an external wave) was examined to find the electronic lens power in the active elements.
Resumo:
This paper investigates distortions and residual stresses induced in butt joint of thin plates using Metal Inert Gas welding. A moving distributed heat source model based on Goldak's double-ellipsoid heat flux distribution is implemented in Finite Element (FE) simulation of the welding process. Thermo-elastic-plastic FE methods are applied to modelling thermal and mechanical behaviour of the welded plate during the welding process. Prediction of temperature variations, fusion zone and heat affected zone as well as longitudinal and transverse shrinkage, angular distortion, and residual stress is obtained. FE analysis results of welding distortions are compared with existing experimental and empirical predictions. The welding speed and plate thickness are shown to have considerable effects on welding distortions and residual stresses. © 2009 Elsevier Ltd. All rights reserved.