940 resultados para Unconditional and Conditional Grants,
Resumo:
Angiotensin II (Ang II) highly stimulates superoxide anion production by neutrophils. The G-protein Rac2 modulates the activity of NADPH oxidase in response to various stimuli. Here, we describe that Ang II induced both Rac2 translocation from the cytosol to the plasma membrane and Rac2 GTP-binding activity. Furthermore, Clostridium difficile toxin A, an inhibitor of the Rho-GTPases family Rho, Rac and Cdc42, prevented Ang II-elicited O2-/ROS production, phosphorylation of the mitogen-activated protein kinases (MAPKs) p38, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase 1/2, and Rac2 activation. Rac2 GTPase inhibition by C. difficile toxin A was accompanied by a robust reduction of the cytosolic Ca(2)(+) elevation induced by Ang II in human neutrophils. Furthermore, SB203580 and PD098059 act as inhibitors of p38MAPK and ERK1/2 respectively, wortmannin, an inhibitor of phosphatidylinositol-3-kinase, and cyclosporin A, a calcineurin inhibitor, hindered both translocation of Rac2 from the cytosol to the plasma membrane and enhancement of Rac2 GTP-binding elicited by Ang II. These results provide evidence that the activation of Rac2 by Ang II is exerted through multiple signalling pathways, involving Ca(2)(+)/calcineurin and protein kinases, the elucidation of which should be insightful in the design of new therapies aimed at reversing the inflammation of vessel walls found in a number of cardiovascular diseases.
Resumo:
Aims: To evaluate whether ki-67 labelling index (LI) has independent prognostic value for survival of patients with bladder urothelial tumours graded according to the 2004 World Health Organisation classification. Methods: Ki-67 LI was evaluated in 164 cases using the grid counting method. Non-invasive (stage Ta) tumours were: papilloma (n = 5), papillary urothelial neoplasia of low malignant potential (PUNLMP; n = 26), and low (LG; n = 34) or high grade (HG; n = 15) papillary urothelial carcinoma. Early invasive (stage T1) tumours were: LG (n = 58) and HG (n = 26) carcinoma. Statistical analysis included Fisher and x2 tests, and mean comparisons by ANOVA and t test. Univariate and multivariate survival analyses were performed according to the Kaplan–Meier method with log rank test and Cox’s proportional hazard method. Results: Mean ki-67 LI increased from papilloma to PUNLMP, LG, and HG in stage Ta (p,0.0001) and from LG to HG in stage T1 (p = 0.013) tumours. High tumour proliferation (.13%) was related to greater tumour size (p = 0.036), recurrence (p = 0.036), progression (p = 0.035), survival (p = 0.054), and high p53 accumulation (p = 0.015). Ki-67 LI and tumour size were independent predictors of disease free survival (DFS), but only ki-67 LI was related to progression free survival (PFS). Cancer specific overall survival (OS) was related to ki-67 LI, tumour size, and p27kip1 downregulation. Ki-67 LI was the main independent predictor of DFS (p = 0.0005), PFS (p = 0.0162), and cancer specific OS (p = 00195). Conclusion: Tumour proliferation measured by Ki-67 LI is related to tumour recurrence, stage progression, and is an independent predictor of DFS, PFS, and cancer specific OS in TaT1 bladder urothelial cell carcinoma.
Resumo:
The chemotherapeutic drug 5-FU is widely used in the treatment of a range of cancers, but resistance to the drug remains a major clinical problem. Since defects in the mediators of apoptosis may account for chemo-resistance, the identification of new targets involved in 5-FU-induced apoptosis is of main clinical interest. We have identified the ds-RNA-dependent protein kinase (PKR)as a key molecular target of 5-FU involved in apoptosis induction in human colon and breast cancer cell lines. PKR distribution and activation, apoptosis induction and cytotoxic effects were analyzed during 5-FU and 5-FU/IFNalpha treatment in several colon and breast cancer cell lines with different p53 status. PKR protein was activated by 5-FU treatment in a p53-independent manner,inducing phosphorylation of the protein synthesis translation initiation factor eIF-2alpha and cell death by apoptosis. Furthermore, PKR interference promoted a decreased response to 5-FU treatment and those cells were not affected by the synergistic antitumor activity of 5-FU/IFNalpha combination. These results, taken together, provide evidence that PKR is a key molecular target of 5-FU with potential relevance in the clinical use of this drug.
Resumo:
Background: A functional polymorphism located at 21 from the start codon of the CD40 gene, rs1883832, was previously reported to disrupt a Kozak sequence essential for translation. It has been consistently associated with Graves’ disease risk in populations of different ethnicity and genetic proxies of this variant evaluated in genome-wide association studies have shown evidence of an effect in rheumatoid arthritis and multiple sclerosis (MS) susceptibility. However, the protective allele associated with Graves’ disease or rheumatoid arthritis has shown a risk role in MS, an effect that we aimed to replicate in the present work. We hypothesized that this functional polymorphism might also show an association with other complex autoimmune condition such as inflammatory bowel disease, given the CD40 overexpression previously observed in Crohn’s disease (CD) lesions. Methodology: Genotyping of rs1883832C.T was performed in 1564 MS, 1102 CD and 969 ulcerative colitis (UC) Spanish patients and in 2948 ethnically matched controls by TaqMan chemistry. Principal Findings: The observed effect of the minor allele rs1883832T was replicated in our independent Spanish MS cohort [p= 0.025; OR (95% CI)= 1.12 (1.01–1.23)]. The frequency of the minor allele was also significantly higher in CD patients than in controls [p= 0.002; OR (95% CI)= 1.19 (1.06–1.33)]. This increased predisposition was not detected in UC patients [p= 0.5; OR (95% CI)= 1.04 (0.93–1.17)]. Conclusion: The impact of CD40 rs1883832 on MS and CD risk points to a common signaling shared by these autoimmune conditions
Resumo:
(INFINITIVE + CLITIC + AUX) is an evidential configuration in Old Spanish and Old Catalan, whereas (PARTICIPLE + CLITIC + AUX) is an instance of weak or unmarked focus fronting. The evidentiality of mesoclitic structures can be put forward on the bases of three main arguments: a) mesoclisis is not compulsory (i.e., whenever you have a clitic, you can either have mesoclisis or proclisis/enclisis); b) mesoclitic futures and conditionals areattested in interrogative sentences (with wh- elements); and c) they are not found in derived adverbial clauses (which is what you expect if they have an evidential value, since they bring about intervention effects corresponding to the derivational account of conditional and temporal sentences, for example - see Haegeman 2007 and ff.), and are related to high modal expressions (thus interfering with MoodPIrrealis)
Resumo:
Reconstruction of large oral mucosa defects is often challenging, since the shortage of healthy oral mucosa to replace the excised tissues is very common. In this context, tissue engineering techniques may provide a source of autologous tissues available for transplant in these patients. In this work, we developed a new model of artificial oral mucosa generated by tissue engineering using a fibrin-agarose scaffold. For that purpose, we generated primary cultures of human oral mucosa fibroblasts and keratinocytes from small biopsies of normal oral mucosa using enzymatic treatments. Then we determined the viability of the cultured cells by electron probe quantitative X-ray microanalysis, and we demonstrated that most of the cells in the primary cultures were alive and had high K/Na ratios. Once cell viability was determined, we used the cultured fibroblasts and keratinocytes to develop an artificial oral mucosa construct by using a fibrin-agarose extracellular matrix and a sequential culture technique using porous culture inserts. Histological analysis of the artificial tissues showed high similarities with normal oral mucosa controls. The epithelium of the oral substitutes had several layers, with desmosomes and apical microvilli and microplicae. Both the controls and the oral mucosa substitutes showed high suprabasal expression of cytokeratin 13 and low expression of cytokeratin 10. All these results suggest that our model of oral mucosa using fibrin-agarose scaffolds show several similarities with native human oral mucosa.
Resumo:
INTRODUCTION Genome-wide association studies of rheumatoid arthritis (RA) have identified an association of the disease with a 6q23 region devoid of genes. TNFAIP3, an RA candidate gene, flanks this region, and polymorphisms in both the TNFAIP3 gene and the intergenic region are associated with systemic lupus erythematosus. We hypothesized that there is a similar association with RA, including polymorphisms in TNFAIP3 and the intergenic region. METHODS To test this hypothesis, we selected tag-single nucleotide polymorphisms (SNPs) in both loci. They were analyzed in 1,651 patients with RA and 1,619 control individuals of Spanish ancestry. RESULTS Weak evidence of association was found both in the 6q23 intergenic region and in the TNFAIP3 locus. The rs582757 SNP and a common haplotype in the TNFAIP3 locus exhibited association with RA. In the intergenic region, two SNPs were associated, namely rs609438 and rs13207033. The latter was only associated in patients with anti-citrullinated peptide antibodies. Overall, statistical association was best explained by the interdependent contribution of SNPs from the two loci TNFAIP3 and the 6q23 intergenic region. CONCLUSIONS Our data are consistent with the hypothesis that several RA genetic factors exist in the 6q23 region, including polymorphisms in the TNFAIP3 gene, like that previously described for systemic lupus erythematosus.
Resumo:
BACKGROUND Inflammation has been implicated as an etiological factor in several human cancers, including prostate cancer. Allelic variants of the genes involved in inflammatory pathways are logical candidates as genetic determinants of prostate cancer risk. The purpose of this study was to investigate whether single nucleotide polymorphisms of genes that lead to increased levels of pro-inflammatory cytokines and chemokines are associated with an increased prostate cancer risk. METHODS A case-control study design was used to test the association between prostate cancer risk and the polymorphisms TNF-A-308 A/G (rs 1800629), RANTES-403 G/A (rs 2107538), IL1-A-889 C/T (rs 1800587) and MCP-1 2518 G/A (rs 1024611) in 296 patients diagnosed with prostate cancer and in 311 healthy controls from the same area. RESULTS Diagnosis of prostate cancer was significantly associated with TNF-A GA + AA genotype (OR, 1.61; 95% CI, 1.09-2.64) and RANTES GA + AA genotype (OR, 1.44; 95% CI, 1.09-2.38). A alleles in TNF-A and RANTES influenced prostate cancer susceptibility and acted independently of each other in these subjects. No epistatic effect was found for the combination of different polymorphisms studied. Finally, no overall association was found between prostate cancer risk and IL1-A or MCP-1 polymorphisms. CONCLUSION Our results and previously published findings on genes associated with innate immunity support the hypothesis that polymorphisms in proinflammatory genes may be important in prostate cancer development.
Resumo:
INTRODUCTION Radiotherapy outcomes might be further improved by a greater understanding of the individual variations in normal tissue reactions that determine tolerance. Most published studies on radiation toxicity have been performed retrospectively. Our prospective study was launched in 1996 to measure the in vitro radiosensitivity of peripheral blood lymphocytes before treatment with radical radiotherapy in patients with breast cancer, and to assess the early and the late radiation skin side effects in the same group of patients. We prospectively recruited consecutive breast cancer patients receiving radiation therapy after breast surgery. To evaluate whether early and late side effects of radiotherapy can be predicted by the assay, a study was conducted of the association between the results of in vitro radiosensitivity tests and acute and late adverse radiation effects. METHODS Intrinsic molecular radiosensitivity was measured by using an initial radiation-induced DNA damage assay on lymphocytes obtained from breast cancer patients before radiotherapy. Acute reactions were assessed in 108 of these patients on the last treatment day. Late morbidity was assessed after 7 years of follow-up in some of these patients. The Radiation Therapy Oncology Group (RTOG) morbidity score system was used for both assessments. RESULTS Radiosensitivity values obtained using the in vitro test showed no relation with the acute or late adverse skin reactions observed. There was no evidence of a relation between acute and late normal tissue reactions assessed in the same patients. A positive relation was found between the treatment volume and both early and late side effects. CONCLUSION After radiation treatment, a number of cells containing major changes can have a long survival and disappear very slowly, becoming a chronic focus of immunological system stimulation. This stimulation can produce, in a stochastic manner, late radiation-related adverse effects of varying severity. Further research is warranted to identify the major determinants of normal tissue radiation response to make it possible to individualize treatments and improve the outcome of radiotherapy in cancer patients.
Resumo:
Résumé : c-Myc, le premier facteur de transcription de la famille Myc a été découvert il y a maintenant trente ans. Il reste à l'heure actuelle parmi les plus puissants proto-oncogènes connus. c-Myc est dérégulé dans plus de 50% des cancers, où il promeut la prolifération, la croissance cellulaire, et la néoangiogenèse. Myc peut aussi influencer de nombreuses autres fonctions de par sa capacité à activer ou à réprimer la transcription de nombreux gènes, et à agir globalement sur le génome à travers des modifications épigénétiques de la chromatine. La famille d'oncogènes Myc comprend, chez les mammifères, trois protéines structurellement proches: c-Myc, N-Myc et L-Myc. Ces protéines ont les mêmes proprietés biochimiques, exercent les mêmes fonctions mais sont le plus souvent exprimées de façon mutuellement exclusive. Myc a été récemment identifié comme un facteur clef dans la maintenance des cellules souches embryonnaires et adultes ainsi que dans la réacquisition des proprietés des cellules souches. Nous avons précédemment démontré que l'élimination de c-Myc provoque une accumulation de cellules souches hématopoïétiques (CSH) suite à un défaut de différenciation lié à la niche. Les CSH sont responsables de la production de tous les éléments cellulaires du sang pour toute la vie de l'individu et sont définies par leur capacité à s'auto-renouveler tout en produisant des précurseurs hématopoïétiques. Afin de mieux comprendre la fonction de Myc dans les CSH, nous avons choisi de combiner l'utilisation de modèles de souris génétiquement modifiées à une caractérisation systématique des schémas d'expression de c-Myc, N-Myc et L-Myc dans tout le système hématopoïétique. Nous avons ainsi découvert que les CSH les plus immatures expriment des quantités équivalentes de transcrits de c-myc et N-myc. Si les CSH déficientes en N-myc seulement ont une capacité d'auto-renouvellement à long-terme réduite, l'invalidation combinée des gènes c-myc et N-myc conduit à une pan-cytopénie suivie d'une mort rapide de l'animal, pour cause d'apoptose de tous les types cellulaires hématopoïétiques. En particulier, les CSH en cours d'auto-renouvelemment, mais pas les CSH quiescentes, accumulent du Granzyme B (GrB), une molécule fortement cytotoxique qui provoque une mort cellulaire rapide. Ces données ont ainsi mis au jour un nouveau mécanisme dont dépend la survie des CSH, à savoir la répression du GrB, une enzyme typiquement utilisée par le système immunitaire inné pour éliminer les tumeurs et les cellules infectées par des virus. Dans le but d'évaluer l'étendue de la redondance entre c-Myc et N-Myc dans les CSH, nous avons d'une part examiné des souris dans lesquelles les séquences codantes de c-myc sont remplacées par celles de N-myc (NCR) et d'autre part nous avons géneré une série allèlique de myc en éliminant de façon combinatoire un ou plusieurs allèles de c-myc et/ou de N-myc. Alors que l'analyse des souris NCR suggère que c-Myc et N-Myc sont qualitativement redondants, la série allélique indique que les efficiences avec lesquelles ces deux protéines influencent des procédés essentiels à la maintenance des CSH sont différentes. En conclusion, nos données génétiques montrent que l'activité générale de MYC, fournie par c-Myc et N-Myc, contrôle plusieurs aspects cruciaux de la fonction des CSH, notamment l'auto-renouvellement, la survie et la différenciation. Abstract : c-Myc, the first Myc transcription factor was discovered 30 years ago and is to date one of the most potent proto-oncogenes described. It is found to be misregulated in over 50% of all cancers, where it drives proliferation, cell growth and neo-angiogenesis. Myc can also influence a variety of other functions, owing to its ability to activate and repress transcription of many target genes and to globally regulate the genome via epigenetic modifications of the chromatin. The Myc family of oncogenes consists of three closely related proteins in mammals: c-Myc, N-Myc and L-Myc. These proteins share the same biochemical properties, exert mostly the same functions, but are most often expressed in mutually exclusive patterns. Myc is now emerging as a key factor in maintenance of embryonic and adult stem cells as well as in reacquisition of stem cell properties, including induced reprogramming. We previously showed that c-Myc deficiency can cause the accumulation of hematopoietic stem cells (HSCs) due to a niche dependent differentiation defect. HSCs are responsible for life-long replenishment of all blood cell types, and are defined by their ability to self-renew while concomitantly giving rise to more commited progenitors. To gain further insight into the function of Myc in HSCs, in this study we combine the use of genetically-modified mouse models with the systematic characterization of c-myc, N-myc and L-myc transcription patterns throughout the hematopoietic system. Interestingly, the most immature HSCs express not only c-myc, but also about equal amounts of N-myc transcripts. Although conditional deletion of N-myc alone in the bone marrow does not affect steady-state hematopoiesis, N-myc null HSCs show impaired long-term self-renewal capacity. Strikingly, combined deficiency of c-Myc and N-Myc results in pan-cytopenia and rapid lethality, due to the apoptosis of most hematopoietic cell types. In particular, self-renewing HSCs, but not quiescent HSCs or progenitor cell types rapidly up-regulate and accumulate the potent cytotoxic molecule GranzymeB (GrB), causing their rapid cell death. These data uncover a novel pathway on which HSC survival depends on, namely repression of GrB, a molecule typically used by the innate immune system to eliminate tumor and virus infected cells. To evaluate the extent of redundancy between c-Myc and N-Myc in HSCs, we examined mice in which c-myc coding sequences are replaced by that of N-myc (NCR) and also generated an allelic series of myc, by combinatorially deleting one or several c-myc and/or N-myc alleles. While the analysis of NCR mice suggests that c-Myc and N-Myc are qualitatively functionally redundant, our allelic series indicates that the efficiencies with which these two proteins affect crucial HSC maintenance processes are likely to be distinct. Collectively, our genetic data show that general "MYC" activity delivered by c-Myc and N-Myc controls crucial aspects of HSC function, including self-renewal, survival and niche dependent differentiation.
Resumo:
Clonally complex infections by Mycobacterium tuberculosis are progressively more accepted. Studies of their dimension in epidemiological scenarios where the infective pressure is not high are scarce. Our study systematically searched for clonally complex infections (mixed infections by more than one strain and simultaneous presence of clonal variants) by applying mycobacterial interspersed repetitive-unit (MIRU)-variable-number tandem-repeat (VNTR) analysis to M. tuberculosis isolates from two population-based samples of respiratory (703 cases) and respiratory-extrapulmonary (R+E) tuberculosis (TB) cases (71 cases) in a context of moderate TB incidence. Clonally complex infections were found in 11 (1.6%) of the respiratory TB cases and in 10 (14.1%) of those with R+E TB. Among the 21 cases with clonally complex TB, 9 were infected by 2 independent strains and the remaining 12 showed the simultaneous presence of 2 to 3 clonal variants. For the 10 R+E TB cases with clonally complex infections, compartmentalization (different compositions of strains/clonal variants in independent infected sites) was found in 9 of them. All the strains/clonal variants were also genotyped by IS6110-based restriction fragment length polymorphism analysis, which split two MIRU-defined clonal variants, although in general, it showed a lower discriminatory power to identify the clonal heterogeneity revealed by MIRU-VNTR analysis. The comparative analysis of IS6110 insertion sites between coinfecting clonal variants showed differences in the genes coding for a cutinase, a PPE family protein, and two conserved hypothetical proteins. Diagnostic delay, existence of previous TB, risk for overexposure, and clustered/orphan status of the involved strains were analyzed to propose possible explanations for the cases with clonally complex infections. Our study characterizes in detail all the clonally complex infections by M. tuberculosis found in a systematic survey and contributes to the characterization that these phenomena can be found to an extent higher than expected, even in an unselected population-based sample lacking high infective pressure.
Resumo:
Pregnancy reduces maternal risk of breast cancer in the long term, but the biological determinants of the protection are unknown. Animal experiments suggest that estrogens and progesterone could be involved, but direct human evidence is scant. A case-control study (536 cases and 1,049 controls) was nested within the Finnish Maternity Cohort. Eligible were primiparous women who delivered at term a singleton offspring before age 40. For each case, two individually matched controls by age (±6 months) and date of sampling (±3 months) were selected. Estradiol, estrone and progesterone in first-trimester serum were measured by high-performance liquid chromatography tandem mass spectrometry and sex-hormone binding globulin (SHBG) by immunoassay. Odds ratios (OR) and 95% confidence intervals (CI) were estimated through conditional logistic regression. In the whole study population there was no association of breast cancer with any of the studied hormones. In analyses stratified by age at diagnosis, however, estradiol concentrations were positively associated with risk of breast cancer before age 40 (upper quartile OR, 1.81; CI, 1.08-3.06), but inversely associated with risk in women who were diagnosed ≥age 40 (upper quartile OR, 0.64; CI, 0.40-1.04), p(interaction) 0.004. Risk estimates for estrone mirrored those for estradiol but were less pronounced. Progesterone was not associated with risk of subsequent breast cancer. Our results provide initial evidence that concentrations of estrogens during the early parts of a primiparous pregnancy are associated with maternal risk of breast cancer and suggest that the effect may differ for tumors diagnosed before and after age 40.
Resumo:
Résumé : La voie de signalisation Notch est essentielle pour la différentiation de l'épiderme lors du développement embryonnaire de la peau. Il a été démontré que l'inactivation de Notch1 dans la peau de souris conduit à une hyperplasie de l'épiderme ainsi qu'à la formation subséquente de carcinomes basocellulaires ainsi que de plaques cornéennes. L'inactivation de Notch1 dans la cornée combinée à des lésions mécaniques démontre que les cellules progénitrices de la cornée se différentient en un épithélium hyperplasique et kératinisé comme la peau. Ce changement de destinée cellulaire conduit à une cécité cornéenne et implique des processus non-autonomes aux cellules épithéliales, caractérisés par la sécrétion de FGF-2 par l'épithélium Notch1-/- suivi d'une vascularisation et d'un remaniement du stroma sous-jacent. La déficience en vitamine A est connu comme cause de lésions cornéennes humaines (xérophtalmie sévère). En accord, nous avons trouvé que la signalisation Notch1 était liée au métabolisme de la vitamine A par la régulation de l'expression de CRBP1, nécessaire pour générer un pool de rétinol intracellulaire. La perte de Notch1 dans l'épiderme, l'autre récepteur de la famille présent dans la peau marine, ne conduit pas à un phénotype manifeste. Cependant, l'inactivation dans l'épiderme de Notch1 et Notch2 ensemble, ou de RBP-J, induit une dermatite atopique (DA) sévère chez les souris. De même, les patients souffrants de DA mais pas ceux souffrant de psoriasis ou de lichen plan, ont une réduction marquée de l'expression des récepteurs Notch dans la peau. La perte de Notch dans les keratinocytes conduit à une activation de la voie NF-κB, ce qui ensuite induit la production de TSLP, une cytokine profondément impliquée dans la pathogenèse de la DA. Nous démontrons génétiquement que TSLP est responsable de la DA ainsi que du développent d'un syndrome myéloprolifératif non-autonome aux cellules induit par le G-CSF. Cependant, ces souris avec une inactivation dans l'épiderme de Notch1 et Notch2 et aussi incapables de répondre au TSLP développent des tumeurs invasive sévères caractérisées par une haute activité de signalisation ß-catenin. TSLPR est identifié comme un potentiel suppresseur de tumeur non-autonome aux cellules tumorales; la transplantation de cellules hématopoïétiques TSLPR-/- dans des souris déficientes pour Notch est suffisant pour causer des tumeurs. Summary : The Notch pathway is essential for proper epidermal differentiation during embryonic skin development. It has previously been demonstrated that Notch1 inactivation in marine skin results in epidermal hyperplasia and subsequent formation of basal cell carcinoma-like (BCC-like) tumors as well as corneal plaques. Inducible ablation of Notch1 in the cornea combined with mechanical wounding show that Notch1 deficient corneal progenitor cells differentiate into a hyperplasic, keratinized, skin-like epithelium. This cell fate switch leads to corneal blindness and involves cell non-autonomous processes, characterized by secretion of FGF-2 through Notch1-/- epithelium followed by vascularisation and remodelling of the underlying stroma. Vitamin A deficiency is known to induce a similar corneal defect in humans (severe xerophthalmia). Accordingly, we found that Notch1 signaling is linked to vitamin A metabolism by regulating the expression of CRBP1, required to generate a pool of intracellular retinol. Epidermal loss of Notch2, the other Notch receptor present in marine skin, doesn't lead to any overt phenotypes. However, postnatal epidermis-specific inactivation of both Notch1 and Notch2, or of RBP-J, induces the development of a severe form of atopic dermatitis (AD) in mice. Likewise, patients suffering from AD, but not psoriasis or lichen planas, have a marked reduction of Notch receptor expression in the skin. Loss of Notch in keratinocytes leads to an activation of NF-κB signaling which in turn induces the production of Thymic stromal lymphopoietin (TSLP), a cytokine deeply implicated in the pathogenesis of AD. We genetically demonstrate that TSLP is responsible for AD as well as the development of a cell non-autonomous G-CSF induced myeloproliferative disorder (MPD) in mice. However, these mice with conditional epidermal inactivation of Notch1 and Notch2 as well as incapable to respond to TSLP develop severe invasive tumors characterized by high ß-catenin signaling activity. TSLPR is identified as a potential cell non-autonomous tumor suppressor; transplantation of TSLPR-/- hematopoietic cells into epidermal Notch deficient mice is sufficient to cause tumors.
Resumo:
Pancreatic beta-cell apoptosis is known to participate in the beta-cell destruction process that occurs in diabetes. It has been described that high glucose level induces a hyperfunctional status which could provoke apoptosis. This phenomenon is known as glucotoxicity and has been proposed that it can play a role in type 1 diabetes mellitus pathogenesis. In this study we develop an experimental design to sensitize pancreatic islet cells by high glucose to streptozotocin (STZ) and proinflammatory cytokines [interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma]-induced apoptosis. This method is appropriate for subsequent quantification of apoptotic islet cells stained with Tdt-mediated dUTP Nick-End Labeling (TUNEL) and protein expression assays by Western Blotting (WB).
Resumo:
BACKGROUND: Magnetic resonance imaging (MRI) of pacemakers is a relative contraindication because of the risks to the patient from potentially hazardous interactions between the MRI and the pacemaker system. Chest scans (ie, cardiac magnetic resonance scans) are of particular importance and higher risk. The previously Food and Drug Administration-approved magnetic resonance conditional system includes positioning restrictions, limiting the powerful utility of MRI. OBJECTIVE: To confirm the safety and effectiveness of a pacemaker system designed for safe whole body MRI without MRI scan positioning restrictions. METHODS: Primary eligibility criteria included standard dual-chamber pacing indications. Patients (n = 263) were randomized in a 2:1 ratio to undergo 16 chest and head scans at 1.5 T between 9 and 12 weeks postimplant (n = 177) or to not undergo MRI (n = 86) post-implant. Evaluation of the pacemaker system occurred immediately before, during (monitoring), and after MRI, 1-week post-MRI, and 1-month post-MRI, and similarly for controls. Primary end points measured the MRI-related complication-free rate for safety and compared pacing capture threshold between MRI and control subjects for effectiveness. RESULTS: There were no MRI-related complications during or after MRI in subjects undergoing MRI (n = 148). Differences in pacing capture threshold values from pre-MRI to 1-month post-MRI were minimal and similar between the MRI and control groups. CONCLUSIONS: This randomized trial demonstrates that the Advisa MRI pulse generator and CapSureFix MRI 5086MRI lead system is safe and effective in the 1.5 T MRI environment without positioning restrictions for MRI scans or limitations of body parts scanned.