993 resultados para Ultracold Atoms
Resumo:
The present work discusses the appearance of the concepts of valence and molecular structure, and describes the appropriation and evolution of the concept of molecule in the period following the publication of Avogadro's Hypothesis. The point of reference is the development of what became known as Organic Chemistry, which encompassed Pharmacy, Physiological Chemistry, Animal and Plant Chemistry, Chemistry of Dyestuffs, Agricultural Chemistry, and the fledgling Organic Synthesis industry in the early 19th century. The theories formulated in these areas and the quest for accurate atomic weights led to those concepts of valence and molecular structure and to a precise differentiation between atom and molecule.
Resumo:
The effect of the introduction of nitrogen atoms upon the triplet excited state reactivity of 1,4-diaza-9-fluorenone (1) and 1,4-diaza-9-benz[b]fluorenone (2), in acetonitrile, was investigated employing the nanosecond laser flash photolysis technique. The intersystem crossing quantum yield (Φces) for 1 and 2 was determined using 9-fluorenone as a secondary standard (Φces= 0.48, in acetonitrile) and for both diazafluorenones a value of Φces= 0.28 was found. Quenching rate constants ranged from 8.17x10(4) L mol-1 s-1 (2-propanol) to 1.02x10(10) L mol-1 s-1 (DABCO) for 1,4-diaza-9-fluorenone and from 6.95x10(5) L mol-1 s-1 (2-propanol) to 5.94x10(9) L mol-1 s-1 (DABCO) for 1,4-diaza-9-benz[b]fluorenone, depending if the quenching process involves energy, hydrogen or electron transfer. A comparison between quenching rate constants for both diazaflurenones and the parent compound, i.e. 9-fluorenone, a ketone with lowest triple state of ππ* configuration, lead to the conclusion that the reactive triplet excited state for 1,4-diaza-9-fluorenone and 1,4-diaza-9-benz[b]fluorenone has ππ* configuration.
Resumo:
Oxocarbons ions are cyclic compounds presenting unusual electronic and vibrational properties. These molecules anions possess a high symmetry and degree of electronic delocalization, characteristics that have been discussed in several structural and spectroscopic investigations. Compounds in which one or more of the carbonyl oxygen atoms are replaced by other atoms or groups are called pseudo-oxocarbons. Compounds formed by substitution of the carbonyl groups by nitrogen groups former a new class named squaraines. Specificity the dicyanomethylene groups are interesting because of the possibility of further extension of the electronic delocalization and a new coordination site. These molecules also present interesting coordination properties which make these systems potentially useful in crystal engineering research.
Resumo:
A computational method to simulate the changes in the electronic structure of Ga1-xMn xN was performed in order to improve the understanding of the indirect contribution of Mn atoms. This periodic quantum-mechanical method is based on density functional theory at B3LYP level. The electronic structures are compared with experimental data of the absorption edge of the GaMnN. It was observed that the indirect influence of Mn through the structural parameters can account for the main part of the band gap variation for materials in the diluted regime (x<0.08), and is still significant for higher compositions (x~0.18).
Resumo:
Hydrogen bonds formed through the interaction between a high electronic density center (lone electron pairs, π or pseudo-π bonds) and proton donors cause important electronic and vibrational phenomena in many systems. However, it was demonstrated that proton donors interact with hydrides, such as alkali and alkaline earth metals (BeH2, MgH2, LiH and NaH), what yields a new type of interaction so-called dihydrogen bonds. The characterization of these interactions has been performed at light of the Quantum Theory of Atoms in Molecules (QTAIM), by which the electronic densities ρ are quantified and the intermolecular regions are characterized as closed-shell interactions through the analysis of the Laplacian field ∇2ρ.
Resumo:
Bulk and supported molybdenum based catalysts, modified by nickel, phosphorous or tungsten were studied by NEXAFS spectroscopy at the Mo L III and L II edges. The techniques of principal component analysis (PCA) together with a linear combination analysis (LCA) allowed the detection and quantification of molybdenum atoms in two different coordination states in the oxide form of the catalysts, namely tetrahedral and octahedral coordination.
Resumo:
Density Functional Theory (DFT) calculations on the interactions of small atoms (H, C, O, and S) on first-row transition metal clusters were performed. The results show that the adsorption site may vary between the metal surface and the edge of the cluster. The adsorption energies, adatom-nearest neighbor and adatom-metal plane distances were also determined. Finally, the authors present a discussion about the performance of these metals as anodes on solid oxide fuel cells. The results obtained agree with empirical data, indicating that the theoretical model used is adequate
Resumo:
We have around ninety chemical elements available in nature, which were produced mainly by nuclear reactions inside stars. The fusion reactions are the main synthesis process which generates the light and intermediate masses elements. The synthesis begins with the hydrogen burning reaching the region of iron mass nuclei. Heavier elements are synthesized by neutron capture processes, forming exotic nuclei with large neutron excess. These systems present characteristics very different from nuclei inside of stable atoms; they only occur in particular astrophysical environments or are produced artificially in special laboratory conditions. This work discusses some properties of the exotic nuclei and how they participate in the synthesis of elements.
Resumo:
In this work was made an investigation about bulk and surface models (at maximum 20 layers) of the TiO2 material in the (001) direction. TiO2 commercial sample was feature using XDR technique to determine phase and crystallites average size. Bulk and (001) surface models were simulated for TiO2 material using DFT/B3LYP and its results were used for calculating energy surface, electronic levels, superficial atomic displacement and charge maps. Atoms of the first and second layers of the slab model showed electronic densities very well organized in the form of chains or wires.
Resumo:
Here we describe the total syntheses and characterization by elemental analyses, infrared and NMR spectroscopy of three new compounds analogous to avenaciolide, a bis-γ-lactone isolated from Aspergillus avenaceus that possesses antifungal activity, where the octyl group of the natural product was replaced by aromatic groups containing chlorine and fluorine atoms. The effects of the avenaciolide, the novel compounds and their synthetic precursors on mycelia development and conidia germination of Colletotrichum gloeosporioides and Fusarium solani were evaluated in vitro. The title compounds were almost as active as avenaciolide. The absolute structures of the chlorinated analogs were determined by X-ray diffraction analysis.
Resumo:
The aim of the study was to synthesize the urea (13CO(NH2)2), with 99% 13C atoms, and to perform a quality analysis for the diagnosis (breath test) of Helicobacter pylori. Furthermore, the process was submitted to economic analysis. The reaction was performed in a stainless steel reactor, lined with polytetrafluoroethylene, under low pressure and temperature. The synthesis method was shown to be appropriate (2.35 g; 81.9% yield), evidenced by physico-chemical and microbiological results, according to Brazilian legislation. The production and diagnosis costs were competitive compared with national and international market values, rendering this a valuable tool in clinical medicine.
Resumo:
We extended our previous exploration of sulfur bridges as bioisosteric replacements for atoms forming the bridge between the aromatic rings of combretastatin A-4. Employing coupling reactions between 5-iodo-1,2,3-trimethoxybenzene and substituted thiols, followed by oxidation to sulfones with m-CPBA, different locations for attaching the sulfur atom to ring A through the synthesis of nine compounds were examined. Antitubulin activity was performed with electrophoretically homogenous bovine brain tubulin, and activity occurred with the 1,2,3-trimethoxy-4-[(4-methoxyphenyl)thio]benzene (12), while the other compounds were inactive. The compounds were also tested for leishmanicidal activity using promastigote forms of Leishmania braziliensis (MHOM/BR175/M2904), and the greatest activity was observed with 1,2,3-trimethoxy-4-(phenylthio)benzene (10) and 1,2,3-trimethoxy-4-[(4-methoxyphenyl) sulfinyl]benzene (15).
Resumo:
Electron paramagnetic resonance (EPR) spectroscopy was used to study the main structural accommodations of spin labels in bilayers of saturated phosphatidylcholines with acyl chain lengths ranging from 16 to 22 carbon atoms. EPR spectra allowed the identification of two distinct spectral components in thermodynamic equilibrium at temperatures below and above the main phase transition. An accurate analysis of EPR spectra, using two fitting programs, enabled determination of the thermodynamic profile for these major probe accommodations. Focusing the analysis on two-component EPR spectra of a spin-labeled lipid, the influence of 40 mol % cholesterol in DPPC was studied.
Resumo:
The year 2013 marks the centennial of that wondrous year in which Niels Bohr proposed a novel theory about the constitution of atoms and small molecules after which the way we regard atoms and their behaviour began to be drastically altered. Bohr drew on several sources for his original description of the atoms, most importantly on spectroscopy and Balmer's equation thereof, the new quantum hypothesis advanced a few years earlier by Planck, and the planetary atom proposed by Rutherford. Although Bohr's ideas were to be eventually overtaken by the advent of quantum mechanics, his theory was the basis of a new thinking about atoms and molecules which constitutes an invaluable asset in the development of science ever since.
Resumo:
A hundred years ago, a twenty-eight year old Danish scientist published a series of three papers in which electron motion was quantized. The Bohr atomic model is surely known by every chemistry student. Nevertheless in this same 1913 trilogy, Bohr studied atoms with several electrons as well as molecules. Chemistry students, in general, are not aware of the Bohr molecule. The present paper aims at rescuing this important classical model. A review of the Bohr atomic model for both one and several electrons is discussed, together with a theoretical presentation of the Bohr molecule.