884 resultados para Ubiquitous Computing, Pervasive Computing, Internet of Things, Cloud Computing
Resumo:
In the present paper we characterize the statistical properties of non-precipitating tropical ice clouds (deep ice anvils resulting from deep convection and cirrus clouds) over Niamey, Niger, West Africa, and Darwin, northern Australia, using ground-based radar–lidar observations from the Atmospheric Radiation Measurement (ARM) programme. The ice cloud properties analysed in this paper are the frequency of ice cloud occurrence, cloud fraction, the morphological properties (cloud-top height, base height, and thickness), the microphysical and radiative properties (ice water content, visible extinction, effective radius, terminal fall speed, and concentration), and the internal cloud dynamics (in-cloud vertical air velocity). The main highlight of the paper is that it characterizes for the first time the probability density functions of the tropical ice cloud properties, their vertical variability and their diurnal variability at the same time. This is particularly important over West Africa, since the ARM deployment in Niamey provides the first vertically resolved observations of non-precipitating ice clouds in this crucial area in terms of redistribution of water and energy in the troposphere. The comparison between the two sites also provides an additional observational basis for the evaluation of the parametrization of clouds in large-scale models, which should be able to reproduce both the statistical properties at each site and the differences between the two sites. The frequency of ice cloud occurrence is found to be much larger over Darwin when compared to Niamey, and with a much larger diurnal variability, which is well correlated with the diurnal cycle of deep convective activity. The diurnal cycle of the ice cloud occurrence over Niamey is also much less correlated with that of deep convective activity than over Darwin, probably owing to the fact that Niamey is further away from the deep convective sources of the region. The frequency distributions of cloud fraction are strongly bimodal and broadly similar over the two sites, with a predominance of clouds characterized either by a very small cloud fraction (less than 0.3) or a very large cloud fraction (larger than 0.9). The ice clouds over Darwin are also much thicker (by 1 km or more statistically) and are characterized by a much larger diurnal variability than ice clouds over Niamey. Ice clouds over Niamey are also characterized by smaller particle sizes and fall speeds but in much larger concentrations, thereby carrying more ice water and producing more visible extinction than the ice clouds over Darwin. It is also found that there is a much larger occurrence of downward in-cloud air motions less than 1 m s−1 over Darwin, which together with the larger fall speeds retrieved over Darwin indicates that the life cycle of ice clouds is probably shorter over Darwin than over Niamey.
Resumo:
2011 is the centenary year of the short paper (Wilson,1911) first describing the cloud chamber, the device for visualising high-energy charged particles which earned the Scottish physicist Charles Thomas Rees (‘CTR’) Wilson the 1927 Nobel Prize for physics. His many achievements in atmospheric science, some of which have current relevance, are briefly reviewed here. CTR Wilson’s lifetime of scientific research work was principally in atmospheric electricity at the Cavendish Laboratory, Cambridge; he was Reader in Electrical Meteorology from 1918 and Jacksonian Professor from 1925 to 1935. However, he is immortalised in physics for his invention of the cloud chamber, because of its great significance as an early visualisation tool for particles such as cosmic rays1 (Galison, 1997). Sir Lawrence Bragg summarised its importance:
Resumo:
The Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) project has produced a global data-set of cloud and aerosol properties from the Along Track Scanning Radiometer-2 (ATSR-2) instrument, covering the time period 1995�2001. This paper presents the validation of aerosol optical depths (AODs) over the ocean from this product against AERONET sun-photometer measurements, as well as a comparison to the Advanced Very High Resolution Radiometer (AVHRR) optical depth product produced by the Global Aerosol Climatology Project (GACP). The GRAPE AOD over ocean is found to be in good agreement with AERONET measurements, with a Pearson's correlation coefficient of 0.79 and a best-fit slope of 1.0±0.1, but with a positive bias of 0.08±0.04. Although the GRAPE and GACP datasets show reasonable agreement, there are significant differences. These discrepancies are explored, and suggest that the downward trend in AOD reported by GACP may arise from changes in sampling due to the orbital drift of the AVHRR instruments.
Resumo:
Several studies using ocean–atmosphere general circulation models (GCMs) suggest that the atmospheric component plays a dominant role in the modelled El Niño-Southern Oscillation (ENSO). To help elucidate these findings, the two main atmosphere feedbacks relevant to ENSO, the Bjerknes positive feedback (μ) and the heat flux negative feedback (α), are here analysed in nine AMIP runs of the CMIP3 multimodel dataset. We find that these models generally have improved feedbacks compared to the coupled runs which were analysed in part I of this study. The Bjerknes feedback, μ, is increased in most AMIP runs compared to the coupled run counterparts, and exhibits both positive and negative biases with respect to ERA40. As in the coupled runs, the shortwave and latent heat flux feedbacks are the two dominant components of α in the AMIP runs. We investigate the mechanisms behind these two important feedbacks, in particular focusing on the strong 1997–1998 El Niño. Biases in the shortwave flux feedback, α SW, are the main source of model uncertainty in α. Most models do not successfully represent the negative αSW in the East Pacific, primarily due to an overly strong low-cloud positive feedback in the far eastern Pacific. Biases in the cloud response to dynamical changes dominate the modelled α SW biases, though errors in the large-scale circulation response to sea surface temperature (SST) forcing also play a role. Analysis of the cloud radiative forcing in the East Pacific reveals model biases in low cloud amount and optical thickness which may affect α SW. We further show that the negative latent heat flux feedback, α LH, exhibits less diversity than α SW and is primarily driven by variations in the near-surface specific humidity difference. However, biases in both the near-surface wind speed and humidity response to SST forcing can explain the inter-model αLH differences.
Resumo:
A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in-situ statistical characterization of continental boundary-layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, physical aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that supports modeling studies and facilitates evaluation of a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about two-thirds of the cloud flights occurred in May and June, boundary-layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 77% of the flights occurring in cumulus and stratocumulus. Preliminary analyses illustrate use of these data to analyze cloud-aerosol relationships, characterize the horizontal variability of cloud radiative impacts, and evaluate surface-based retrievals. We discuss how an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.
Resumo:
A cloud-resolving model is modified to implement the weak temperature gradient approximation in order to simulate the interactions between tropical convection and the large-scale tropical circulation. The instantaneous domain-mean potential temperature is relaxed toward a reference profile obtained from a radiative–convective equilibrium simulation of the cloud-resolving model. For homogeneous surface conditions, the model state at equilibrium is a large-scale circulation with its descending branch in the simulated column. This is similar to the equilibrium state found in some other studies, but not all. For this model, the development of such a circulation is insensitive to the relaxation profile and the initial conditions. Two columns of the cloud-resolving model are fully coupled by relaxing the instantaneous domain-mean potential temperature in both columns toward each other. This configuration is energetically closed in contrast to the reference-column configuration. No mean large-scale circulation develops over homogeneous surface conditions, regardless of the relative area of the two columns. The sensitivity to nonuniform surface conditions is similar to that obtained in the reference-column configuration if the two simulated columns have very different areas, but it is markedly weaker for columns of comparable area. The weaker sensitivity can be understood as being a consequence of a formulation for which the energy budget is closed. The reference-column configuration has been used to study the convection in a local region under the influence of a large-scale circulation. The extension to a two-column configuration is proposed as a methodology for studying the influence on local convection of changes in remote convection.
Resumo:
Numerical Weather Prediction (NWP) fields are used to assist the detection of cloud in satellite imagery. Simulated observations based on NWP are used within a framework based on Bayes' theorem to calculate a physically-based probability of each pixel with an imaged scene being clear or cloudy. Different thresholds can be set on the probabilities to create application-specific cloud-masks. Here, this is done over both land and ocean using night-time (infrared) imagery. We use a validation dataset of difficult cloud detection targets for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) achieving true skill scores of 87% and 48% for ocean and land, respectively using the Bayesian technique, compared to 74% and 39%, respectively for the threshold-based techniques associated with the validation dataset.
Resumo:
Numerical Weather Prediction (NWP) fields are used to assist the detection of cloud in satellite imagery. Simulated observations based on NWP are used within a framework based on Bayes' theorem to calculate a physically-based probability of each pixel with an imaged scene being clear or cloudy. Different thresholds can be set on the probabilities to create application-specific cloud masks. Here, the technique is shown to be suitable for daytime applications over land and sea, using visible and near-infrared imagery, in addition to thermal infrared. We use a validation dataset of difficult cloud detection targets for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) achieving true skill scores of 89% and 73% for ocean and land, respectively using the Bayesian technique, compared to 90% and 70%, respectively for the threshold-based techniques associated with the validation dataset.
Resumo:
During the VOCALS campaign spaceborne satellite observations showed that travelling gravity wave packets, generated by geostrophic adjustment, resulted in perturbations to marine boundary layer (MBL) clouds over the south-east Pacific Ocean (SEP). Often, these perturbations were reversible in that passage of the wave resulted in the clouds becoming brighter (in the wave crest), then darker (in the wave trough) and subsequently recovering their properties after the passage of the wave. However, occasionally the wave packets triggered irreversible changes to the clouds, which transformed from closed mesoscale cellular convection to open form. In this paper we use large eddy simulation (LES) to examine the physical mechanisms that cause this transition. Specifically, we examine whether the clearing of the cloud is due to (i) the wave causing additional cloud-top entrainment of warm, dry air or (ii) whether the additional condensation of liquid water onto the existing drops and the subsequent formation of drizzle are the important mechanisms. We find that, although the wave does cause additional drizzle formation, this is not the reason for the persistent clearing of the cloud; rather it is the additional entrainment of warm, dry air into the cloud followed by a reduction in longwave cooling, although this only has a significant effect when the cloud is starting to decouple from the boundary layer. The result in this case is a change from a stratocumulus to a more patchy cloud regime. For the simulations presented here, cloud condensation nuclei (CCN) scavenging did not play an important role in the clearing of the cloud. The results have implications for understanding transitions between the different cellular regimes in marine boundary layer (MBL) clouds.
Resumo:
What is it that gives celebrities the voice and authority to do and say the things they do in the realm of development politics? Asked another way, how is celebrity practised and, simultaneously, how does this praxis make celebrity, personas, politics and, indeed, celebrities themselves? In this article, we explore this ‘celebrity praxis’ through the lens of the creation of the contemporary ‘development celebrity’ in those stars working for development writ large in the so-called Third World. Drawing on work in science studies, material cultures and the growing geo-socio-anthropologies of things, the key to understanding the material practices embedded in and creating development celebrity networks is the multiple and complex circulations of the everyday and bespectacled artefacts of celebrity. Conceptualised as the ‘celebrity–consumption–compassion complex’, the performances of development celebrities are as much about everyday events, materials, technologies, emotions and consumer acts as they are about the mediated and liquidised constructions of the stars who now ‘market’ development.Moreover, this complex is constructed by and constructs what we are calling ‘star/poverty space’ that works to facilitate the ‘expertise’ and ‘authenticity’ and, thus, elevated voice and authority, of development celebrities through poverty tours, photoshoots, textual and visual diaries, websites and tweets. In short, the creation of star/poverty space is performed through a kind of ‘materiality of authenticity’ that is at the centre of the networks of development celebrity. The article concludes with several brief observations about the politics, possibilities and problematics of development celebrities and the star/poverty spaces that they create.
Resumo:
We present five new cloud detection algorithms over land based on dynamic threshold or Bayesian techniques, applicable to the Advanced Along Track Scanning Radiometer (AATSR) instrument and compare these with the standard threshold based SADIST cloud detection scheme. We use a manually classified dataset as a reference to assess algorithm performance and quantify the impact of each cloud detection scheme on land surface temperature (LST) retrieval. The use of probabilistic Bayesian cloud detection methods improves algorithm true skill scores by 8-9 % over SADIST (maximum score of 77.93 % compared to 69.27 %). We present an assessment of the impact of imperfect cloud masking, in relation to the reference cloud mask, on the retrieved AATSR LST imposing a 2 K tolerance over a 3x3 pixel domain. We find an increase of 5-7 % in the observations falling within this tolerance when using Bayesian methods (maximum of 92.02 % compared to 85.69 %). We also demonstrate that the use of dynamic thresholds in the tests employed by SADIST can significantly improve performance, applicable to cloud-test data to provided by the Sea and Land Surface Temperature Radiometer (SLSTR) due to be launched on the Sentinel 3 mission (estimated 2014).
Resumo:
Tagging provides support for retrieval and categorization of online content depending on users' tag choice. A number of models of tagging behaviour have been proposed to identify factors that are considered to affect taggers, such as users' tagging history. In this paper, we use Semiotics Analysis and Activity theory, to study the effect the system designer has over tagging behaviour. The framework we use shows the components that comprise the tagging system and how they interact together to direct tagging behaviour. We analysed two collaborative tagging systems: CiteULike and Delicious by studying their components by applying our framework. Using datasets from both systems, we found that 35% of CiteULike users did not provide tags compared to only 0.1% of Delicious users. This was directly linked to the type of tools used by the system designer to support tagging.
Resumo:
This chapter looks at three films whose Portuguese urban settings offer a privileged ground for the re-evaluation of the classical-modern-postmodern categorisation with regard to cinema. They are The State of Things (Wim Wenders, 1982), Foreign Land (Walter Salles and Daniela Thomas, 1995) and Mysteries of Lisbon (Raúl Ruiz, 2010). In them, the city is the place where characters lose their bearings, names, identities, and where vicious circles, mirrors, replicas and mise-en-abyme bring the vertiginous movement that had characterised the modernist city of 1920s cinema to a halt. Curiously, too, it is the place where so-called postmodern aesthetics finally finds an ideal home in self-ironical tales that expose the film medium’s narrative shortcomings. Intermedial devices, whether Polaroid stills or a cardboard cut-out theatre, are then resorted to in order to turn a larger-than-life reality into framed, manageable narrative miniatures. The scaled-down real, however, turns out to be a disappointing simulacrum, a memory ersatz that unveils the illusory character of cosmopolitan teleology. In my approach, I start by examining the intertwined and transnational genesis of these films that resulted in three correlated visions of the end of history and of storytelling, typical of postmodern aesthetics. I move on to consider intermedia miniaturism as an attempt to stop time within movement, an equation that inevitably brings to mind the Deleuzian movement-time binary, which I revisit in an attempt to disentangle it from the classical-modern opposition. I conclude by proposing reflexive stasis and scale reversal as the common denominator across all modern projects, hence, perhaps, a more advantageous model than modernity to signify artistic and political values.
Resumo:
This is the second half of a two-part paper dealing with the social theoretic assumptions underlying system dynamics. In the first half it was concluded that analysing system dynamics using traditional, paradigm-based social theories is highly problematic. An innovative and potentially fruitful resolution is now proposed to these problems. In the first section it is argued that in order to find an appropriate social theoretic home for system dynamics it is necessary to look to a key exchange in contemporary social science: the agency/structure debate. This debate aims to move beyond both the theories based only on the actions of individual human agents, and those theories that emphasise only structural influences. Emerging from this debate are various theories that instead aim to unite the human agent view of the social realm with views that concentrate solely on system structure. It is argued that system dynamics is best viewed as being implicitly grounded in such theories. The main conclusion is therefore that system dynamics can contribute to an important part of social thinking by providing a formal approach for explicating social mechanisms. This conclusion is of general significance for system dynamics. However, the over-arching aim of the two-part paper is to increase the understanding of system dynamics in related disciplines. Four suggestions are therefore offered for how the system dynamics method might be extended further into the social sciences. It is argued that, presented in the right way, the formal yet contingent feedback causality thinking of system dynamics should diffuse widely in the social sciences and make a distinctive and important contribution to them. Felix qui potuit rerum cognoscere causas Happy is he who comes to know the causes of things Virgil - Georgics, Book II, line 490. 29 BCE