947 resultados para Turf and dirt tracks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A climatology of cyclones with a focus on their relation to wind storm tracks in the Mediterranean region (MR) is presented. Trends in the frequency of cyclones and wind storms, as well as variations associated with the North Atlantic Oscillation (NAO), the East Atlantic/West Russian (EAWR) and the Scandinavian variability pattern (SCAND) are discussed. The study is based on the ERA40 reanalysis dataset. Wind storm tracks are identified by tracking clusters of adjacent grid boxes characterised by extremely high local wind speeds. The wind track is assigned to a cyclone track independently identified with an objective scheme. Areas with high wind activity – quantified by extreme wind tracks – are typically located south of the Golf of Genoa, south of Cyprus, southeast of Sicily and west of the Iberian Peninsula. About 69% of the wind storms are caused by cyclones located in the Mediterranean region, while the remaining 31% can be attributed to North Atlantic or Northern European cyclones. The North Atlantic Oscillation, the East Atlantic/West Russian pattern and the Scandinavian pattern all influence the amount and spatial distribution of wind inducing cyclones and wind events in the MR. The strongest signals exist for the NAO and the EAWR pattern, which are both associated with an increase in the number of organised strong wind events in the eastern MR during their positive phase. On the other hand, the storm numbers decrease over the western MR for the positive phase of the NAO and over the central MR during the positive phase of the EAWR pattern. The positive phase of the Scandinavian pattern is associated with a decrease in the number of winter wind storms over most of the MR. A third of the trends in the number of wind storms and wind producing cyclones during the winter season of the ERA40 period may be attributed to the variability of the North Atlantic Oscillation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A range of possible changes in the frequency and characteristics of European wind storms under future climate conditions was investigated on the basis of a multi-model ensemble of 9 coupled global climate model (GCM) simulations for the 20th and 21st centuries following the IPCC SRES A1B scenario. A multi-model approach allowed an estimation of the (un)certainties of the climate change signals. General changes in large-scale atmospheric flow were analysed, the occurrence of wind storms was quantified, and atmospheric features associated with wind storm events were considered. Identified storm days were investigated according to atmospheric circulation, associated pressure patterns, cyclone tracks and wind speed patterns. Validation against reanalysis data revealed that the GCMs are in general capable of realistically reproducing characteristics of European circulation weather types (CWTs) and wind storms. Results are given with respect to frequency of occurrence, storm-associated flow conditions, cyclone tracks and specific wind speed patterns. Under anthropogenic climate change conditions (SRES A1B scenario), increased frequency of westerly flow during winter is detected over the central European investigation area. In the ensemble mean, the number of detected wind storm days increases between 19 and 33% for 2 different measures of storminess, only 1 GCM revealed less storm days. The increased number of storm days detected in most models is disproportionately high compared to the related CWT changes. The mean intensity of cyclones associated with storm days in the ensemble mean increases by about 10 (±10)% in the Eastern Atlantic, near the British Isles and in the North Sea. Accordingly, wind speeds associated with storm events increase significantly by about 5 (±5)% over large parts of central Europe, mainly on days with westerly flow. The basic conclusions of this work remain valid if different ensemble contructions are considered, leaving out an outlier model or including multiple runs of one particular model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The occurrence of extreme cyclones is analysed in terms of their relationship to the NAO phase and the dominating environmental variables controlling their intensification. These are latent energy (equivalent potential temperature 850 hPa is used as an indicator), upper-air baroclinicity, horizontal divergence and jet stream strength. Cyclones over the North Atlantic are identified and tracked using a numerical algorithm, permitting a detailed analysis of their life cycles. Extreme cyclones are selected as the 10% most severe in terms of intensity. Investigations focus on the main strengthening phase of each cyclone. The environmental factors are related to the NAO, which affects the location and orientation of the cyclone tracks, thus explaining why extreme cyclones occur more (less) frequently during strong positive (negative) NAO phases. The enhanced number of extreme cyclones in positive NAO phases can be explained by the larger area with suitable growth conditions, which is better aligned with the cyclone tracks and is associated with increased cyclone life time and intensity. Moreover, strong intensification of cyclones is frequently linked to the occurrence of extreme values of growth factors in the immediate vicinity of the cyclone centre. Similar results are found for ECHAM5/OM1 for present day conditions, demonstrating that relationships between the environment factors and cyclones are also valid in the GCM. For future climate conditions (following the SRES A1B scenario), the results are similar, but a small increase of the frequency of extreme values is detected near the cyclone cores. On the other hand, total cyclone numbers decrease by 10% over the North Atlantic. An exception is the region near the British Isles, which features increased track density and intensity of extreme cyclones irrespective of the NAO phase. These changes are associated with an intensified jet stream close to Europe. Moreover, an enhanced frequency of explosive developments over the British Isles is found, leading to more frequent windstorms affecting Europe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Winter storm-track activity over the Northern Hemisphere and its changes in a greenhouse gas scenario (the Special Report on Emission Scenarios A1B forcing) are computed from an ensemble of 23 single runs from 16 coupled global climate models (CGCMs). All models reproduce the general structures of the observed climatological storm-track pattern under present-day forcing conditions. Ensemble mean changes resulting from anthropogenic forcing include an increase of baroclinic wave activity over the eastern North Atlantic, amounting to 5%–8% by the end of the twenty-first century. Enhanced activity is also found over the Asian continent and over the North Pacific near the Aleutian Islands. At high latitudes and over parts of the subtropics, activity is reduced. Variations of the individual models around the ensemble average signal are not small, with a median of the pattern correlation near r = 0.5. There is, however, no evidence for a link between deviations in present-day climatology and deviations with respect to climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synoptic activity over the Northern Hemisphere is evaluated in ensembles of ECHAM5/MPI-OM1 simulations for recent climate conditions (20C) and for three climate scenarios (following SRES A1B, A2, B1). A close agreement is found between the simulations for present day climate and the respective results from reanalysis. Significant changes in the winter mid-tropospheric storm tracks are detected in all three scenario simulations. Ensemble mean climate signals are rather similar, with particularly large activity increases downstream of the Atlantic storm track over Western Europe. The magnitude of this signal is largely dependent on the imposed change in forcing. However, differences between individual ensemble members may be large. With respect to the surface cyclones, the scenario runs produce a reduction in cyclonic track density over the mid-latitudes, even in the areas with increasing mid-tropospheric activity. The largest decrease in track densities occurs at subtropical latitudes, e.g., over the Mediterranean Basin. An increase of cyclone intensities is detected for limited areas (e.g., near Great Britain and Aleutian Isles) for the A1B and A2 experiments. The changes in synoptic activity are associated with alterations of the Northern Hemisphere circulation and background conditions (blocking frequencies, jet stream). The North Atlantic Oscillation index also shows increased values with enhanced forcing. With respect to the effects of changing synoptic activity, the regional change in cyclone intensities is accompanied by alterations of the extreme surface winds, with increasing values over Great Britain, North and Baltic Seas, as well as the areas with vanishing sea ice, and decreases over much of the subtropics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors study the role of ocean heat transport (OHT) in the maintenance of a warm, equable, ice-free climate. An ensemble of idealized aquaplanet GCM calculations is used to assess the equilibrium sensitivity of global mean surface temperature and its equator-to-pole gradient (ΔT) to variations in OHT, prescribed through a simple analytical formula representing export out of the tropics and poleward convergence. Low-latitude OHT warms the mid- to high latitudes without cooling the tropics; increases by 1°C and ΔT decreases by 2.6°C for every 0.5-PW increase in OHT across 30° latitude. This warming is relatively insensitive to the detailed meridional structure of OHT. It occurs in spite of near-perfect atmospheric compensation of large imposed variations in OHT: the total poleward heat transport is nearly fixed. The warming results from a convective adjustment of the extratropical troposphere. Increased OHT drives a shift from large-scale to convective precipitation in the midlatitude storm tracks. Warming arises primarily from enhanced greenhouse trapping associated with convective moistening of the upper troposphere. Warming extends to the poles by atmospheric processes even in the absence of high-latitude OHT. A new conceptual model for equable climates is proposed, in which OHT plays a key role by driving enhanced deep convection in the midlatitude storm tracks. In this view, the climatic impact of OHT depends on its effects on the greenhouse properties of the atmosphere, rather than its ability to increase the total poleward energy transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An urban energy and water balance model is presented which uses a small number of commonly measured meteorological variables and information about the surface cover. Rates of evaporation-interception for a single layer with multiple surface types (paved, buildings, coniferous trees and/or shrubs, deciduous trees and/or shrubs, irrigated grass, non-irrigated grass and water) are calculated. Below each surface type, except water, there is a single soil layer. At each time step the moisture state of each surface is calculated. Horizontal water movements at the surface and in the soil are incorporated. Particular attention is given to the surface conductance used to model evaporation and its parameters. The model is tested against direct flux measurements carried out over a number of years in Vancouver, Canada and Los Angeles, USA. At all measurement sites the model is able to simulate the net all-wave radiation and turbulent sensible and latent heat well (RMSE = 25–47 W m−2, 30–64 and 20–56 W m−2, respectively). The model reproduces the diurnal cycle of the turbulent fluxes but typically underestimates latent heat flux and overestimates sensible heat flux in the day time. The model tracks measured surface wetness and simulates the variations in soil moisture content. It is able to respond correctly to short-term events as well as annual changes. The largest uncertainty relates to the determination of surface conductance. The model has the potential be used for multiple applications; for example, to predict effects of regulation on urban water use, landscaping and planning scenarios, or to assess climate mitigation strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to understand the physical processes causing the large spread in the storm track projections of the CMIP5 climate models. In particular, the relationship between the climate change responses of the storm tracks, as measured by the 2–6 day mean sea level pressure variance, and the equator-to-pole temperature differences at upper- and lower-tropospheric levels is investigated. In the southern hemisphere the responses of the upper- and lower-tropospheric temperature differences are correlated across the models and as a result they share similar associations with the storm track responses. There are large regions in which the storm track responses are correlated with the temperature difference responses, and a simple linear regression model based on the temperature differences at either level captures the spatial pattern of the mean storm track response as well explaining between 30 and 60 % of the inter-model variance of the storm track responses. In the northern hemisphere the responses of the two temperature differences are not significantly correlated and their associations with the storm track responses are more complicated. In summer, the responses of the lower-tropospheric temperature differences dominate the inter-model spread of the storm track responses. In winter, the responses of the upper- and lower-temperature differences both play a role. The results suggest that there is potential to reduce the spread in storm track responses by constraining the relative magnitudes of the warming in the tropical and polar regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate a coronal mass ejection (CME) propagating toward Earth on 29 March 2011. This event is specifically chosen for its predominately northward directed magnetic field, so that the influence from the momentum flux onto Earth can be isolated. We focus our study on understanding how a small Earth-directed segment propagates. Mass images are created from the white-light cameras onboard STEREO which are also converted into mass height-time maps (mass J-maps). The mass tracks on these J-maps correspond to the sheath region between the CME and its associated shock front as detected by in situ measurements at L1. A time series of mass measurements from the STEREO COR-2A instrument is made along the Earth propagation direction. Qualitatively, this mass time series shows a remarkable resemblance to the L1 in situ density series. The in situ measurements are used as inputs into a three-dimensional (3-D) magnetospheric space weather simulation from the Community Coordinated Modeling Center. These simulations display a sudden compression of the magnetosphere from the large momentum flux at the leading edge of the CME, and predictions are made for the time derivative of the magnetic field (dB/dt) on the ground. The predicted dB/dt values were then compared with the observations from specific equatorially located ground stations and showed notable similarity. This study of the momentum of a CME from the Sun down to its influence on magnetic ground stations on Earth is presented as a preliminary proof of concept, such that future attempts may try to use remote sensing to create density and velocity time series as inputs to magnetospheric simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future climate change projections are often derived from ensembles of simulations from multiple global circulation models using heuristic weighting schemes. This study provides a more rigorous justification for this by introducing a nested family of three simple analysis of variance frameworks. Statistical frameworks are essential in order to quantify the uncertainty associated with the estimate of the mean climate change response. The most general framework yields the “one model, one vote” weighting scheme often used in climate projection. However, a simpler additive framework is found to be preferable when the climate change response is not strongly model dependent. In such situations, the weighted multimodel mean may be interpreted as an estimate of the actual climate response, even in the presence of shared model biases. Statistical significance tests are derived to choose the most appropriate framework for specific multimodel ensemble data. The framework assumptions are explicit and can be checked using simple tests and graphical techniques. The frameworks can be used to test for evidence of nonzero climate response and to construct confidence intervals for the size of the response. The methodology is illustrated by application to North Atlantic storm track data from the Coupled Model Intercomparison Project phase 5 (CMIP5) multimodel ensemble. Despite large variations in the historical storm tracks, the cyclone frequency climate change response is not found to be model dependent over most of the region. This gives high confidence in the response estimates. Statistically significant decreases in cyclone frequency are found on the flanks of the North Atlantic storm track and in the Mediterranean basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In September 2013, the 5th Assessment Report (5AR) of the International Panel on Climate Change (IPCC) has been released. Taking the 5AR cli-mate change scenarios into account, the World Bank published an earli-er report on climate change and its impacts on selected hot spot re-gions, including Southeast Asia. Currently, dynamical and statistical-dynamical downscaling efforts are underway to obtain higher resolution and more robust regional climate change projections for tropical South-east Asia, including Vietnam. Such initiatives are formalized under the World Meteorological Organization (WMO) Coordinated Regional Dynamic Downscaling Experiment (CORDEX) East Asia and Southeast Asia and also take place in climate change impact projects such as the joint Vietnam-ese-German project “Environmental and Water Protection Technologies of Coastal Zones in Vietnam (EWATEC-COAST)”. In this contribution, the lat-est assessments for changes in temperature, precipitation, sea level, and tropical cyclones (TCs) under the 5AR Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 are reviewed. Special emphasis is put on changes in extreme events like heat waves and/or heavy precipita-tion. A regional focus is Vietnam south of 16°N. A continued increase in mean near surface temperature is projected, reaching up to 5°C at the end of this century in northern Vietnam un-der the high greenhouse-gas forcing scenario RCP8.5. Overall, project-ed changes in annual precipitation are small, but there is a tendency of more rainfall in the boreal winter dry season. Unprecedented heat waves and an increase in extreme precipitation events are projected by both global and regional climate models. Globally, TCs are projected to decrease in number, but an increase in intensity of peak winds and rain-fall in the inner core region is estimated. Though an assessment of changes in land-falling frequency in Vietnam is uncertain due to difficul-ties in assessing changes in TC tracks, some work indicates a reduction in the number of land-falling TCs in Vietnam. Sea level may rise by 75-100 cm until the end of the century with the Vietnamese coastline experienc-ing 10-15% higher rise than on global average. Given the large rice and aquaculture production in the Mekong and Red River Deltas, that are both prone to TC-related storm surges and flooding, this poses a challenge to foodsecurity and protection of coastal population and assets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are large uncertainties in the circulation response of the atmosphere to climate change. One manifestation of this is the substantial spread in projections for the extratropical storm tracks made by different state-of-the-art climate models. In this study we perform a series of sensitivity experiments, with the atmosphere component of a single climate model, in order to identify the causes of the differences between storm track responses in different models. In particular, the Northern Hemisphere wintertime storm tracks in the CMIP3 multi-model ensemble are considered. A number of potential physical drivers of storm track change are identified and their influence on the storm tracks is assessed. The experimental design aims to perturb the different physical drivers independently, by magnitudes representative of the range of values present in the CMIP3 model runs, and this is achieved via perturbations to the sea surface temperature and the sea-ice concentration forcing fields. We ask the question: can the spread of projections for the extratropical storm tracks present in the CMIP3 models be accounted for in a simple way by any of the identified drivers? The results suggest that, whilst the changes in the upper-tropospheric equator-to-pole temperature difference have an influence on the storm track response to climate change, the large spread of projections for the extratropical storm track present in the northern North Atlantic in particular is more strongly associated with changes in the lower-tropospheric equator-to-pole temperature difference.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Threat detection is a challenging problem, because threats appear in many variations and differences to normal behaviour can be very subtle. In this paper, we consider threats on a parking lot, where theft of a truck’s cargo occurs. The threats range from explicit, e.g. a person attacking the truck driver, to implicit, e.g. somebody loitering and then fiddling with the exterior of the truck in order to open it. Our goal is a system that is able to recognize a threat instantaneously as they develop. Typical observables of the threats are a person’s activity, presence in a particular zone and the trajectory. The novelty of this paper is an encoding of these threat observables in a semantic, intermediate-level representation, based on low-level visual features that have no intrinsic semantic meaning themselves. The aim of this representation was to bridge the semantic gap between the low-level tracks and motion and the higher-level notion of threats. In our experiments, we demonstrate that our semantic representation is more descriptive for threat detection than directly using low-level features. We find that a person’s activities are the most important elements of this semantic representation, followed by the person’s trajectory. The proposed threat detection system is very accurate: 96.6 % of the tracks are correctly interpreted, when considering the temporal context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundamental puzzles of climate science remain unsolved because of our limited understanding of how clouds, circulation and climate interact. One example is our inability to provide robust assessments of future global and regional climate changes. However, ongoing advances in our capacity to observe, simulate and conceptualize the climate system now make it possible to fill gaps in our knowledge. We argue that progress can be accelerated by focusing research on a handful of important scientific questions that have become tractable as a result of recent advances. We propose four such questions below; they involve understanding the role of cloud feedbacks and convective organization in climate, and the factors that control the position, the strength and the variability of the tropical rain belts and the extratropical storm tracks.