981 resultados para Tsai-Wu
Resumo:
Si has attracted enormous research and manufacturing attention as an anode material for lithium ion batteries (LIBs) because of its high specific capacity. The lack of a low cost and effective mechanism to prevent the pulverization of Si electrodes during the lithiation/ delithiation process has been a major barrier in the mass production of Si anodes. Naturally abundant gum arabic (GA), composed of polysaccharides and glycoproteins, is applied as a dualfunction binder to address this dilemma. Firstly, the hydroxyl groups of the polysaccharide in GA are crucial in ensuring strong binding to Si. Secondly, similar to the function of fiber in fiberreinforced concrete (FRC), the long chain glycoproteins provide further mechanical tolerance to dramatic volume expansion by Si nanoparticles. The resultant Si anodes present an outstanding capacity of ca. 2000 mAh/g at a 1 C rate and 1000 mAh/g at 2 C rate, respectively, throughout 500 cycles. Excellent long-term stability is demonstrated by the maintenance of 1000 mAh/g specific capacity at 1 C rate for over 1000 cycles. This low cost, naturally abundant and environmentally benign polymer is a promising binder for LIBs in the future.
Resumo:
Introduction Research highlights patients with dual diagnoses of type 2 diabetes and acute coronary syndrome (ACS) have higher readmission rates and poorer health outcomes than patients with singular chronic conditions. Despite this, there is a lack of education programs targeted for this dual diagnosis population to improve self-management and decrease negative health outcomes. There is evidence to suggest that internet based interventions may improve health outcomes for patients with singular chronic conditions, however there is a need to develop an evidence base for ACS patients with comorbid diabetes. There is a growing awareness of the importance of a participatory model in developing effective online interventions. That is, internet interventions are more effective if end users’ perceptions of the intervention are incorporated in their final development prior to testing in large scale trials. Objectives This study investigated patients’ perspectives of the web-based intervention designed to promote self-management of the dual conditions in order to refine the intervention prior to clinical trial evaluation. Methods An interpretive approach with thematic analysis was used to obtain deeper understanding regarding participants’ experience when using web-application interventions for patients with ACS and type 2 diabetes. Semi-structured interviews were undertaken on a purposive sample of 30 patients meeting strict inclusion and exclusion criteria to obtain their perspectives on the program. Results Preliminary results indicate patients with dual diagnoses express more complex needs than those with a singular condition. Participants express a positive experience with the proposed internet intervention and emerging themes include that the web page is seen as easy to use and comforting as a support, in that patients know they are not alone. Further results will be reported as they become available. Conclusion The results indicate potential for patient acceptability of the newly developed internet intervention for patients with ACS and comorbid diabetes. Incorporation of patient perspectives into the final development of the intervention is likely to maximise successful outcomes of any future trials that utilise this intervention. Future quantitative evaluation of the effectiveness of the intervention is being planned.
Resumo:
There has been a growing interest in alignment-free methods for phylogenetic analysis using complete genome data. Among them, CVTree method, feature frequency profiles method and dynamical language approach were used to investigate the whole-proteome phylogeny of large dsDNA viruses. Using the data set of large dsDNA viruses from Gao and Qi (BMC Evol. Biol. 2007), the phylogenetic results based on the CVTree method and the dynamical language approach were compared in Yu et al. (BMC Evol. Biol. 2010). In this paper, we first apply dynamical language approach to the data set of large dsDNA viruses from Wu et al. (Proc. Natl. Acad. Sci. USA 2009) and compare our phylogenetic results with those based on the feature frequency profiles method. Then we construct the whole-proteome phylogeny of the larger dataset combining the above two data sets. According to the report of The International Committee on the Taxonomy of Viruses (ICTV), the trees from our analyses are in good agreement to the latest classification of large dsDNA viruses.
Resumo:
Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stress or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new theoretical approach for the design of new strategies to utilize, enhance and maintain the natural permeability in the deeper and hotter domain of geothermal reservoirs. The advantage of the approach is that, rather than engineering an entirely new EGS reservoir, we acknowledge a suite of creep-assisted geological processes that are driven by the current tectonic stress field. Such processes are particularly supported by higher temperatures potentially allowing in the future to target commercially viable combinations of temperatures and flow rates.
Resumo:
Distance education has gone through rapid expansion over the years. Many Australian universities are pushing the use of distance education in delivering construction education programs. However, the critical success factors (CSFs) in distance learning construction programs (DLCPs) are not fully understood. More importantly, students’ demographic features may affect the selection of distance education technologies. Situation-matching strategies should therefore be taken by universities or institutions with different student cohorts. A survey is adopted in Central Queensland University (CQU) to identify and rank the critical success factors in a DLCP in Australia where there is a significant number of earner-learners and students with low socioeconomic background. The findings suggest that the most important CSFs include access to computers and internet, reliability of web-based learning sites, high relevance and clarity of learning materials and assessment items, the availability of web-based learning sites that can be easily manipulated, and the capability of the instructors to provide well-structured courses. The findings also suggest that students with low socioeconomic background have more rigorous requirements on interface design, instructors’ support, and the integration of practical components into courses. The results provide good guidance of the design and delivery of DLCPs and will be useful for universities and institutions that are seeking to implement the distance mode in construction education.
Resumo:
A thiophene–tetrafluorophenyl–thiophene donor–acceptor–donor building block was used in combination with a furan-substituted diketopyrrolopyrrole for synthesizing the polymer semiconductor, PDPPF-TFPT. Due to the balance of tetrafluorophenylene/diketopyrrolopyrrole electron-withdrawing and furan/thiophene electron-donating moieties in the backbone, PDPPF-TFPT exhibits ambipolar behaviour in organic thin-film transistors, with hole and electron mobilities as high as 0.40 cm2 V−1 s−1 and 0.12 cm2 V−1 s−1.
Resumo:
Background The high recurrence rate of chronic venous leg ulcers has a significant impact on an individual’s quality of life and healthcare costs. Objectives This study aimed to identify risk and protective factors for recurrence of venous leg ulcers using a theoretical approach by applying a framework of self and family management of chronic conditions to underpin the study. Design Secondary analysis of combined data collected from three previous prospective longitudinal studies. Setting The contributing studies’ participants were recruited from two metropolitan hospital outpatient wound clinics and three community-based wound clinics. Participants Data were available on a sample of 250 adults, with a leg ulcer of primarily venous aetiology, who were followed after ulcer healing for a median follow-up time of 17 months after healing (range: 3 to 36 months). Methods Data from the three studies were combined. The original participant data were collected through medical records and self-reported questionnaires upon healing and every 3 months thereafter. A Cox proportion-hazards regression analysis was undertaken to determine the influential factors on leg ulcer recurrence based on the proposed conceptual framework. Results The median time to recurrence was 42 weeks (95% CI 31.9–52.0), with an incidence of 22% (54 of 250 participants) recurrence within three months of healing, 39% (91 of 235 participants) for those who were followed for six months, 57% (111 of 193) by 12 months, 73% (53 of 72) by two years and 78% (41 of 52) of those who were followed up for three years. A Cox proportional-hazards regression model revealed that the risk factors for recurrence included a history of deep vein thrombosis (HR 1.7, 95% CI 1.07–2.67, p=0.024), history of multiple previous leg ulcers (HR 4.4, 95% CI 1.84–10.5, p=0.001), and longer duration (in weeks) of previous ulcer (HR 1.01, 95% CI 1.003–1.01, p<0.001); while the protective factors were elevating legs for at least 30 minutes per day (HR 0.33, 95% CI 0.19–0.56, p<0.001), higher levels of self-efficacy (HR 0.95, 95% CI 0.92–0.99, p=0.016), and walking around for at least three hours/day (HR 0.66, 95% CI 0.44–0.98, p=0.040). Conclusions Results from this study provide a comprehensive examination of risk and protective factors associated with leg ulcer recurrence based on the chronic disease self and family management framework. These results in turn provide essential steps towards developing and testing interventions to promote optimal prevention strategies for venous leg ulcer recurrence.
Resumo:
Due to the increasing recognition of global climate change, the building and construction industry is under pressure to reduce carbon emissions. A central issue in striving towards reduced carbon emissions is the need for a practicable and meaningful yardstick for assessing and communicating greenhouse gas (GHG) results. ISO 14067 was published by the International Organization for Standardization in May 2013. By providing specific requirements in the life cycle assessment (LCA) approach, the standard clarifies the GHG assessment in the aspects of choosing system boundaries and simulating use and end-of-life phases when quantifying carbon footprint of products (CFPs). More importantly, the standard, for the first time, provides step-to-step guidance and standardized template for communicating CFPs in the form of CFP external communication report, CFP performance tracking report, CFP declaration and CFP label. ISO 14067 therefore makes a valuable contribution to GHG quantification and transparent communication and comparison of CFPs. In addition, as cradle-to-grave should be used as the system boundary if use and end-of-life phases can be simulated, ISO 14067 will hopefully promote the development and implementation of simulation technologies, with Building Information Modelling (BIM) in particular, in the building and construction industry.
Resumo:
Multifunctional bioactive materials with the ability to stimulate osteogenesis and angiogenesis of stem cells play an important role in the regeneration of bone defects. However, how to develop such biomaterials remains a significant challenge. In this study, we prepared mesoporous silica nanospheres (MSNs) with uniform sphere size (∼90 nm) and mesopores (∼2.7 nm), which could release silicon ions (Si) to stimulate the osteogenic differentiation of human bone marrow stromal cells (hBMSCs) via activating their ALP activity, bone-related gene and protein (OCN, RUNX2 and OPN) expression. Hypoxia-inducing therapeutic drug, dimethyloxaloylglycine (DMOG), was effectively loaded in the mesopores of MSNs (D-MSNs). The sustained release of DMOG from D-MSNs could stabilize HIF-1α and further stimulated the angiogenic differentiation of hBMSCs as indicated by the enhanced VEGF secretion and protein expression. Our study revealed that D-MSNs could combine the stimulatory effect on both osteogenic and angiogenic activity of hBMSCs. The potential mechanism of D-MSN-stimulated osteogenesis and angiogenesis was further elucidated by the supplementation of cell culture medium with pure Si ions and DMOG. Considering the easy handling characteristics of nanospheres, the prepared D-MSNs may be applied in the forms of injectable spheres for minimally invasive surgery, or MSNs/polymer composite scaffolds for bone defect repair. The concept of delivering both stimulatory ions and functional drugs may offer a new strategy to construct a multifunctional biomaterial system for bone tissue regeneration.
Resumo:
Recently, studies have identified high zinc levels in various environmental resources, and excessive intake of zinc has long been considered to be harmful to human health. The aim of this research was to investigate the effectiveness of tricalcium aluminate (C3A) as a removal agent of zinc from aqueous solution. Inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray diffraction (XRD) and scanning electron microscopy (SEM) have been used to characterize such removal behavior. The effects of various factors such as pH influence, temperature and contact time were investigated. The adsorption capacity of C3A for Zn2+ was computed to be up to 13.73 mmol g−1, and the highest zinc removal capacity was obtained when the initial pH of Zn(NO3)2 solution was between 6.0 and 7.0, with temperature around 308 K. The XRD analysis showed that the resultant products were ZnAl-LDHs. Combined with the analysis of solution component, it was proved the existence of both precipitation and cation exchange in the removal process. From the experimental results, it was clear that C3A could be potentially used as a cost-effective material for the removal of zinc in aqueous environment.
Resumo:
Graphene oxide (GO) has attracted much interest for applications in bone tissue engineering; however, until now the interaction between GO and stem cells, and the in vivo bone-forming ability of GO has not been explored. The aim of this study was to produce a GO-modified β-tricalcium phosphate (β-TCP-GRA) biceramics and then explore the material’s osteogenic capacity in vitro and in vivo, as well as unravel some of the molecular mechanisms behind this. β-TCP-GRA disks and scaffolds were successfully prepared by a simple GO/water suspension soaking method in combination with heat treatment. These scaffolds were found to significantly enhance the proliferation, alkaline phosphatase activity and osteogenic gene expression of human bone marrow stromal cells (hBMSCs), when compared to β-TCP without GO modification (controls). Activation of the Wnt/β-catenin signaling pathway in hBMSCs appears to be the mechanism behind this osteogenic induction by β-TCP-GRA. β-TCP-GRA scaffolds led to an increased rate of in vivo new bone formation compared to β-TCP controls, indicative of the stimulatory effect of GO on in vivo osteogenesis, making GO modification of β-TCP a very promising method for applications in bone tissue engineering, in particular for the regeneration of large bone defects.