995 resultados para Trypanosoma cruzi. Doença de chagas humana. Troponina T. Miosina. Autoanticorpos. Imunopatogenia
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Using ELISA technique, natural antibodies against self and non self antigens were determined in 80 patients chronically intected by T. cruzi and 40 individuals suffering from a deep mycosis frequentely found in Latin Amarica (Paracoccidioidomycosis - PCM). Two forms of PCM were investigated: adult forms and juvenil type of disease. Eighty percent (80%) of the former group had significantly elevated anti-laminin antibody levels (M=4.7,SD±1.8) compared with healthy controls and different specificities of antibody were associated with anti-laminin in pathological sera. A notable binding to cytoskeletal proteins was observed, specially with band 3 and their peptides derivates, such as 62 kDa peptide. By means of Protein A chromatography we were able to show that natural anti-Gal antibodies may be bound by their Fab region to other immunoglobulins and/or to Protein A by alternative sites of binding. The finding of lgG anti-Gal antibodies in circulating immune complexes isolated from chagasic sera supported the first alternative. However, it is possible that some of lgG anti-Gal antibodies, belong to VH111 subgroup of immunoglobulins, that bind directly to Protein A. Among the 40 sera from PCM examined, the majority was considered as not exhibiting a signilicantly higher binding than normal sera to antigens tested. However thirty percent (30%) of the chronic patients had an increased levels of natural antibodies at least for one specificity such as actyn, myosin and Gala1,3Gal epitopes. ln juvenil type of PCM the mean value found for actyn was also increased 2,42 (range 1,0 to 5,3). Utilizing the polyethylene glicol precipitation the presence of circulating immune complexes was investigated in PCM sera. Specific antibodies for soluble antigens from P. brasiliensis and natural antibodies against myoglobin, myosin and Gala1,3 Gal epitopes were characterized
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O presente trabalho foi realizado com o intuito de contextualizar o impacto do surto da doença de Chagas na comercialização do fruto de açaà no municÃpio de Pinheiro-MA. O açaà se destaca devido ao seu aproveitamento integral e por estar associado à agricultura familiar agroextrativista, além de sua importância socioeconômica nas regiões produtoras. É utilizado de inúmeras formas, como planta ornamental no paisagismo; construção rústica de casas e pontes; cobertura de moradias na área rural, remédio; produção de celulose; alimentação humana e animal, dentre outros usos, e sua importância econômica, social e cultural está centrada na produção de frutos e palmitos. O açaà é um fruto de alto valor energético e nutritivo, sendo consumido na região de estudo com farinha de mandioca, tapioca, peixe frito e em forma de suco, sorvete, entre outros. O uso da polpa de açaà generalizou-se em todo o paÃs e o cultivo do açaizeiro e o processamento do seu fruto já ocorrem em vários estados brasileiros. Os métodos utilizados na investigação foram pesquisa documental, observação e aplicação de questionários no municÃpio de Pinheiro-MA. Os dados obtidos foram analisados e tabulados, sendo sumarizados em frequência, média e porcentagem. Com a pesquisa, constatouse que as pessoas diagnosticadas com a doença de Chagas foram contaminadas devido à ingestão de alimentos contaminados, algumas delas possivelmente por açaÃ, oriundo do municÃpio de Igarapé Mirim, estado do Pará. Quando os processadores e comerciantes da polpa de açaà foram indagados sobre a forma de transmissão da doença de chagas, quase metade dos entrevistados não soube responder à questão. Além disso, também foi constatado com a pesquisa que houve redução na comercialização da polpa do açaÃ, quando comparado ao mesmo perÃodo do ano anterior ao surto da doença na região. Isto demonstra a necessidade de um trabalho de conscientização da população e dos processadores do suco de açaà quanto à s formas de transmissão e prevenção da doença, pois a higienização correta dos frutos ainda é o método mais eficiente de prevenção, sendo de suma importância que o produto passe por um processo de lavagem e de pasteurização.
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Toxicity and loss of mitochondrial membrane potential induced by Alkyl Gallates in Trypanosoma cruzi
Resumo:
American trypanosomiasis or Chagas disease is a debilitating disease representing an important social problem that affects, approximately, 10 million people in the world. The main aggravating factor of this situation is the lack of an effective drug to treat the different stages of this disease. In this context, the search for trypanocidal substances isolated from plants, synthetic or semi synthetic molecules, is an important strategy. Here, the trypanocidal potential of gallates was assayed in epimastigotes forms of T. cruzi and also, the interference of these substances on the mitochondrial membrane potential of the parasites was assessed, allowing the study of the mechanism of action of the gallates in the T. cruzi organisms. Regarding the preliminary structure-activity relationships, the side chain length of gallates plays crucial role for activity. Nonyl, decyl, undecyl, and dodecyl gallates showed potent antitrypanosomal effect (IC50 from 1.46 to 2.90 μM) in contrast with benznidazole (IC50 = 34.0 μM). Heptyl gallate showed a strong synergistic activity with benznidazole, reducing by 105-fold the IC50 of benznidazole. Loss of mitochondrial membrane potential induced by these esters was revealed. Tetradecyl gallate induced a loss of 53% of the mitochondrial membrane potential, at IC50 value.
Resumo:
Interferon-γ (IFN-γ) contributes to host resistance during acute infection with Trypanosoma cruzi, the causative agent of Chagas’ disease. Inducibly expressed guanosine triphosphatase (IGTP), a 48-kDa guanosine triphosphatase (GTPase), is a member of a family of GTPase proteins inducibly expressed by IFN-γ. The expression pattern of IGTP suggests that it may mediate IFN-γ–induced responses in a variety of cell types. IGTP has been demonstrated to be important for control of Toxoplasma gondii infection but not for resistance against Listeria monocytogenes. We evaluated the role of IGTP in development of chronic chagasic cardiomyopathy in IGTP null mice and C57X129sv (wild type [WT]) mice infected with the Brazil strain for 6 mo. There was no significant difference in parasitemia or cardiac histopathology between null and WT mice. Right ventricular remodeling was observed in infected IGTP null mice, suggesting that IGTP does not significantly alter the course of T. cruzi infection.
Resumo:
Fogo Selvagem (FS) is an autoimmune bullous disease with pathogenic IgG autoantibodies recognizing desmoglein 1 (Dsg1), a desmosomal glycoprotein. In certain settlements of Brazil, a high prevalence of FS (3%) is reported, suggesting environmental factors as triggers of the autoimmune response. Healthy individuals from endemic areas recognize nonpathogenic epitopes of Dsg1, and exposure to hematophagous insects is a risk factor for FS. Fogo selvagem and Chagas disease share some geographic sites, and anti-Dsg1 has been detected in Chagas patients. Indeterminate Chagas disease was identified in a Brazilian Amerindian population of high risk for FS. In counterpart, none of the FS patients living in the same geographic region showed reactivity against Trypanosoma cruzi. The profile of anti-Dsg1 antibodies showed positive results in 15 of 40 FS sera and in 33 of 150 sera from healthy individuals from endemic FS sites, and no cross-reactivity between Chagas disease and FS was observed.
Resumo:
Protozoan parasites cause thousands of deaths each year in developing countries. The genome projects of these parasites opened a new era in the identification of therapeutic targets. However, the putative function could be predicted for fewer than half of the protein-coding genes. In this work, all Trypanosoma cruzi proteins containing predicted transmembrane spans were processed through an automated computational routine and further analyzed in order to assign the most probable function. The analysis consisted of dissecting the whole predicted protein in different regions. More than 5,000 sequences were processed, and the predicted biological functions were grouped into 19 categories according to the hits obtained after analysis. One focus of interest, due to the scarce information available on trypanosomatids, is the proteins involved in signal-transduction processes. In the present work, we identified 54 proteins belonging to this group, which were individually analyzed. The results show that by means of a simple pipeline it was possible to attribute probable functions to sequences annotated as coding for "hypothetical proteins.'' Also, we successfully identified the majority of candidates participating in the signal-transduction pathways in T. cruzi.
Resumo:
Trypanothione reductase has long been investigated as a promising target for chemotherapeutic intervention in Chagas disease, since it is an enzyme of a unique metabolic pathway that is exclusively present in the pathogen but not in the human host, which has the analog Glutathione reductase. In spite of the present data-set includes a small number of compounds, a combined use of flexible docking, pharmacophore perception, ligand binding site prediction, and Grid-Independent Descriptors GRIND2-based 3D-Quantitative Structure-Activity Relationships (QSAR) procedures allowed us to rationalize the different biological activities of a series of 11 aryl beta-aminocarbonyl derivatives, which are inhibitors of Trypanosoma cruzi trypanothione reductase (TcTR). Three QSAR models were built and validated using different alignments, which are based on docking with the TcTR crystal structure, pharmacophore, and molecular interaction fields. The high statistical significance of the models thus obtained assures the robustness of this second generation of GRIND descriptors here used, which were able to detect the most important residues of such enzyme for binding the aryl beta-aminocarbonyl derivatives, besides to rationalize distances among them. Finally, a revised binding mode has been proposed for our inhibitors and independently supported by the different methodologies here used, allowing further optimization of the lead compounds with such combined structure- and ligand-based approaches in the fight against the Chagas disease.
Resumo:
This work describes the synthesis of a series of sialylmimetic neoglycoconjugates represented by 1,4-disubstituted 1,2,3-triazole-sialic acid derivatives containing galactose modified at either C-1 or C-6 positions, glucose or gulose at C-3 position, and by the amino acid derivative 1,2,3-triazole fused threonine-3-O-galactose as potential TcTS inhibitors and anti-trypanosomal agents. This series was obtained by Cu(I)-catalysed azide-alkyne cycloaddition reaction ('click chemistry') between the azido-functionalized sugars 1-N(3)-Gal (commercial), 6-N(3)-Gal, 3-N(3)-Glc and 3-N(3)-Gul with the corresponding alkyne-based 2-propynyl-sialic acid, as well as by click chemistry reaction between the amino acid N(3)-ThrOBn with 3-O-propynyl-GalOMe. The 1,2,3-triazole linked sialic acid-6-O-galactose and the sialic acid-galactopyranoside showed high Trypanosoma cruzi trans-sialidase (TcTS) inhibitory activity at 1.0 mM (approx. 90%), whilst only the former displayed relevant trypanocidal activity (IC(50) 260 mu M). These results highlight the 1,2,3-triazole linked sialic acid-6-O-galactose as a prototype for further design of new neoglycoconjugates against Chagas' disease. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Chagas' disease is a protozoosis caused by Trypanosoma cruzi that frequently shows severe chronic clinical complications of the heart or digestive system. Neurological disorders due to T. cruzi infection are also described in children and immunosuppressed hosts. We have previously reported that IL-12p40 knockout (KO) mice infected with the T. cruzi strain Sylvio X10/4 develop spinal cord neurodegenerative disease. Here, we further characterized neuropathology, parasite burden and inflammatory component associated to the fatal neurological disorder occurring in this mouse model. Forelimb paralysis in infected IL-12p40KO mice was associated with 60% (p<0.05) decrease in spinal cord neuronal density, glutamate accumulation (153%, p<0.05) and strong demyelization in lesion areas, mostly in those showing heavy protein nitrosylation, all denoting a neurotoxic degenerative profile. Quantification of T. cruzi 18S rRNA showed that parasite burden was controlled in the spinal cord of WT mice, decreasing from the fifth week after infection, but progressive parasite dissemination was observed in IL-12p40KO cords concurrent with significant accumulation of the astrocytic marker GFAP (317.0%, p<0.01) and 8-fold increase in macrophages/microglia (p<0.01), 36.3% (p<0.01) of which were infected. Similarly, mRNA levels for CD3, TNF-alpha, IFN-gamma, iNOS, IL-10 and arginase I declined in WT spinal cords about the fourth or fifth week after infection, but kept increasing in IL-12p40KO mice. Interestingly, compared to WT tissue, lower mRNA levels for IFN-gamma were observed in the IL-12p40KO spinal cords up to the fourth week of infection. Together the data suggest that impairments of parasite clearance mechanisms in IL-12p40KO mice elicit prolonged spinal cord inflammation that in turn leads to irreversible neurodegenerative lesions.