934 resultados para Tris(2-thienyl)methane
Resumo:
We quantified postdepositional losses of methane sulfonate (MSA-), nitrate, and chloride at the European Project for Ice Coring in Antarctica (EPICA) drilling site in Dronning Maud Land (DML) (75°S, 0°E). Analyses of four intermediate deep firn cores and 13 snow pits were considered. We found that about 26 ± 13% of the once deposited nitrate and typically 51 ± 20% of MSA- were lost, while for chloride, no significant depletion could be observed in firn older than one year. Assuming a first order exponential decay rate, the characteristic e-folding time for MSA- is 6.4 ± 3 years and 19 ± 6 years for nitrate. It turns out that for nitrate and MSA- the typical mean concentrations representative for the last 100 years were reached after 5.4 and 6.5 years, respectively, indicating that beneath a depth of around 1.2-1.4 m postdepositional losses can be neglected. In the area of investigation, only MSA- concentrations and postdepositional losses showed a distinct dependence on snow accumulation rate. Consequently, MSA- concentrations archived at this site should be significantly dependent on the variability of annual snow accumulation, and we recommend a corresponding correction. With a simple approach, we estimated the partial pressure of the free acids MSA, HNO3, and HCl on the basis of Henry's law assuming that ionic impurities of the bulk ice matrix are localized in a quasi-brine layer (QBL). In contrast to measurements, this approach predicts a nearly complete loss of MSA-, NO3 - , and Cl-.
Resumo:
Deep Sea Drilling Project (DSDP) studies at Site 570 on the landward slope of the Middle America Trench off Guatemala allow for the first time a quantitative estimate of the methane hydrate content in the massive mudstones deposited there. Drilling across the Guatemalan transect on DSDP Legs 67 and 84 has resulted in the greatest number of visual observations of gas hydrate in any marine area. At Site 570, a 1.5-m-long section of massive methane hydrate was unexpectedly cored in an area where none of the usual signs of gas hydrate in seismic records were present. The sediment section is similar to that recovered at the other eight sites off Guatemala, but drilling at Site 570 may have penetrated through a fault zone that provided the space for accumulation of massive gas hydrate. The methane hydrate was analyzed using the following well logs: density, sonic, resistivity, gamma-ray, caliper, neutron porosity, and temperature. The density, sonic, and resistivity logs define a 15-m-thick hydrated zone within which a 4-m-thick nearly pure hydrate section is contained. The methane gas content ranges from 240 m**3 to 1400 m**3 per m**2 of lateral extent; and if the body extends a square kilometer, its total volume of stored gas could be from 240*10**6m**3 to 1400*10**6m**3. Because the acoustic impedance of hydrate calculated from the sonic and density logs shows no anomalous values, the shape and extent of the hydrate body cannot be defined in seismic records. Thus the body is theoretically nonreflective in contrast to the base of the hydrate reflection. The base of the gas hydrate reflection is presumed to be the result of the velocity contrast between sediment containing gas hydrate and sediment containing free gas.
Resumo:
CH4 and CO2 species in pore fluids from slope sediments off Guatemala show extreme 13C-enrichment (d13C of -41 and +38 per mil, respectively) compared with the typical degree of 13C-enrichment in pore fluids of DSDP sediments (d13C of - 60 and + 10 per mil). These unusual isotopic compositions are believed to result from microbial decomposition of organic matter, and possibly from additional isotopic fractionation associated with the formation of gas hydrates. In addition to the isotopic fractionation displayed by CH4 and CO2, the pore water exhibits a systematic increase in d18O with decrease in chlorinity. As against seawater d18O values of 0 and chlorinity of 19 per mil, the water collected from decomposed gas hydrate from Hole 570 had a d18O of + 3.0 per mil and chlorinity of 9.5 per mil. The isotopic compositions of pore-fluid constituents change gradually with depth in Hole 568 and discontinuously with depth in Hole 570.
Resumo:
Porewater concentrations of sulfate, methane, and other relevant constituents were determined on four sediment cores from the high productivity upwelling area off Namibia which were recovered from the continental slope at water depths of 1300 and 2000 m. At all four stations a distinct sulfate-methane transition zone was observed several meters below the seafloor in which both sulfate and methane are consumed. Nutrient porewater concentration profiles do not show gradient slope changes at the depths of the transition zones. Flux calculations carried out on the basis of the determined porewater profiles revealed that anaerobic methane oxidation accounts for 100% of deep sulfate reduction within the sulfate-methane transition zone and consumes the total net diffusive sulfate flux. A significant contribution of organic carbon oxidation to the reduction of sulfate at these depths could, therefore, be excluded. We state that porewater profiles of sulfate with constant gradients above the transition zones are indicative for anaerobic methane oxidation controlling sulfate reduction.