843 resultados para Tracking and trailing.
Resumo:
The advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics. Such observations are fundamentally important for understanding molecular-level mechanisms governing these systems. Examples reviewed here include the effects of allostery on the stoichiometry of ligand binding in the presence of fluorescent ligands; the observation of subdomain partitioning of membrane proteins due to microenvironment effects; and the use of single particle tracking experiments to elucidate characteristics of membrane protein diffusion and the direct measurement of thermodynamic properties, which govern the free energy landscape of protein dimerization. The review of such characteristic topics represents a snapshot of efforts to push the boundaries of fluorescence microscopy of membrane proteins to the absolute limit.
Resumo:
PURPOSE: We aimed at further elucidating whether aphasic patients' difficulties in understanding non-canonical sentence structures, such as Passive or Object-Verb-Subject sentences, can be attributed to impaired morphosyntactic cue recognition, and to problems in integrating competing interpretations. METHODS: A sentence-picture matching task with canonical and non-canonical spoken sentences was performed using concurrent eye tracking. Accuracy, reaction time, and eye tracking data (fixations) of 50 healthy subjects and 12 aphasic patients were analysed. RESULTS: Patients showed increased error rates and reaction times, as well as delayed fixation preferences for target pictures in non-canonical sentences. Patients' fixation patterns differed from healthy controls and revealed deficits in recognizing and immediately integrating morphosyntactic cues. CONCLUSION: Our study corroborates the notion that difficulties in understanding syntactically complex sentences are attributable to a processing deficit encompassing delayed and therefore impaired recognition and integration of cues, as well as increased competition between interpretations.
Resumo:
Yakutia, Sakha Republic, in the Siberian Far East, represents one of the coldest places on Earth, with winter record temperatures dropping below -70 °C. Nevertheless, Yakutian horses survive all year round in the open air due to striking phenotypic adaptations, including compact body conformations, extremely hairy winter coats, and acute seasonal differences in metabolic activities. The evolutionary origins of Yakutian horses and the genetic basis of their adaptations remain, however, contentious. Here, we present the complete genomes of nine present-day Yakutian horses and two ancient specimens dating from the early 19th century and ∼5,200 y ago. By comparing these genomes with the genomes of two Late Pleistocene, 27 domesticated, and three wild Przewalski's horses, we find that contemporary Yakutian horses do not descend from the native horses that populated the region until the mid-Holocene, but were most likely introduced following the migration of the Yakut people a few centuries ago. Thus, they represent one of the fastest cases of adaptation to the extreme temperatures of the Arctic. We find cis-regulatory mutations to have contributed more than nonsynonymous changes to their adaptation, likely due to the comparatively limited standing variation within gene bodies at the time the population was founded. Genes involved in hair development, body size, and metabolic and hormone signaling pathways represent an essential part of the Yakutian horse adaptive genetic toolkit. Finally, we find evidence for convergent evolution with native human populations and woolly mammoths, suggesting that only a few evolutionary strategies are compatible with survival in extremely cold environments.
Resumo:
Indoor positioning has become an emerging research area because of huge commercial demands for location-based services in indoor environments. Channel State Information (CSI) as a fine-grained physical layer information has been recently proposed to achieve high positioning accuracy by using range-based methods, e.g., trilateration. In this work, we propose to fuse the CSI-based ranges and velocity estimated from inertial sensors by an enhanced particle filter to achieve highly accurate tracking. The algorithm relies on some enhanced ranging methods and further mitigates the remaining ranging errors by a weighting technique. Additionally, we provide an efficient method to estimate the velocity based on inertial sensors. The algorithms are designed in a network-based system, which uses rather cheap commercial devices as anchor nodes. We evaluate our system in a complex environment along three different moving paths. Our proposed tracking method can achieve 1:3m for mean accuracy and 2:2m for 90% accuracy, which is more accurate and stable than pedestrian dead reckoning and range-based positioning.
Resumo:
BACKGROUND: Crossing a street can be a very difficult task for older pedestrians. With increased age and potential cognitive decline, older people take the decision to cross a street primarily based on vehicles' distance, and not on their speed. Furthermore, older pedestrians tend to overestimate their own walking speed, and could not adapt it according to the traffic conditions. Pedestrians' behavior is often tested using virtual reality. Virtual reality presents the advantage of being safe, cost-effective, and allows using standardized test conditions. METHODS: This paper describes an observational study with older and younger adults. Street crossing behavior was investigated in 18 healthy, younger and 18 older subjects by using a virtual reality setting. The aim of the study was to measure behavioral data (such as eye and head movements) and to assess how the two age groups differ in terms of number of safe street crossings, virtual crashes, and missed street crossing opportunities. Street crossing behavior, eye and head movements, in older and younger subjects, were compared with non-parametric tests. RESULTS: The results showed that younger pedestrians behaved in a more secure manner while crossing a street, as compared to older people. The eye and head movements analysis revealed that older people looked more at the ground and less at the other side of the street to cross. CONCLUSIONS: The less secure behavior in street crossing found in older pedestrians could be explained by their reduced cognitive and visual abilities, which, in turn, resulted in difficulties in the decision-making process, especially under time pressure. Decisions to cross a street are based on the distance of the oncoming cars, rather than their speed, for both groups. Older pedestrians look more at their feet, probably because of their need of more time to plan precise stepping movement and, in turn, pay less attention to the traffic. This might help to set up guidelines for improving senior pedestrians' safety, in terms of speed limits, road design, and mixed physical-cognitive trainings.
Resumo:
Index tracking has become one of the most common strategies in asset management. The index-tracking problem consists of constructing a portfolio that replicates the future performance of an index by including only a subset of the index constituents in the portfolio. Finding the most representative subset is challenging when the number of stocks in the index is large. We introduce a new three-stage approach that at first identifies promising subsets by employing data-mining techniques, then determines the stock weights in the subsets using mixed-binary linear programming, and finally evaluates the subsets based on cross validation. The best subset is returned as the tracking portfolio. Our approach outperforms state-of-the-art methods in terms of out-of-sample performance and running times.
Resumo:
Reconstructions of the deposition rate of windblown mineral dust in ocean sediments offer an important means of tracking past climate changes and of assessing the radiative and biogeochemical impacts of dust in past climates. Dust flux estimates in ocean sediments have commonly been based on the operationally defined lithogenic fraction of sediment samples. More recently, dust fluxes have been estimated from measurements of helium and thorium, as rare isotopes of these elements (He-3 and Th-230) allow estimates of sediment flux, and the dominant isotopes (He-4 and Th-232) are uniquely associated with the lithogenic fraction of marine sediments. In order to improve the fidelity of dust flux reconstructions based on He and Th, we present a survey of He and Th concentrations in sediments from dust source areas in East Asia, Australia and South America. Our data show systematic relationships between He and Th concentrations and grain size, with He concentrations decreasing and Th concentrations increasing with decreasing grain size. We find consistent He and Th concentrations in the fine fraction (<5 μm) of samples from East Asia, Australia and Central South America (Puna-Central West Argentina), with Th concentrations averaging 14 μg/g and He concentrations averaging 2 μcc STP/g. We recommend use of these values for estimating dust fluxes in sediments where dust is dominantly fine-grained, and suggest that previous studies may have systematically overestimated Th-based dust fluxes by 30%. Source areas in Patagonia appear to have lower He and Th contents than other regions, as fine fraction concentrations average 0.8 μcc STP/g and 9 μg/g for 4He and 232Th, respectively. The impact of grain size on lithogenic He and Th concentrations should be taken into account in sediments proximal to dust sources where dust grain size may vary considerably. Our data also have important implications for the hosts of He in long-traveled dust and for the 3He/4He ratio used for terrigenous He in studies of extraterrestrial He in sediments and ice. We also investigate the use of He/Th ratios as a provenance tracer. Our results suggest differences in fine fraction He/Th ratios between East Asia, Australia, central South America and Patagonia, with ratios showing a positive relationship with the geological age of source rocks. He/Th ratios may thus provide useful provenance information, for example allowing separation of Patagonian sources from Puna-Central West Argentina or Australian dust sources. He/Th ratios in open-ocean marine sediments are similar to ratios in the fine fraction of upwind dust source areas. He/Th ratios in mid-latitude South Atlantic sediments suggest that dust in this region primarily derives from the Puna-Central West Argentina region (23–32°S) rather than Patagonia (>38°S). In the equatorial Pacific, He/Th ratios are much lower than in extratropical Pacific sediments or potential source areas measured as a part of this study (East Asia, South America, Australia) for reasons that are at present unclear, complicating their use as provenance tracers in this region.
Resumo:
Indoor positioning has attracted considerable attention for decades due to the increasing demands for location based services. In the past years, although numerous methods have been proposed for indoor positioning, it is still challenging to find a convincing solution that combines high positioning accuracy and ease of deployment. Radio-based indoor positioning has emerged as a dominant method due to its ubiquitousness, especially for WiFi. RSSI (Received Signal Strength Indicator) has been investigated in the area of indoor positioning for decades. However, it is prone to multipath propagation and hence fingerprinting has become the most commonly used method for indoor positioning using RSSI. The drawback of fingerprinting is that it requires intensive labour efforts to calibrate the radio map prior to experiments, which makes the deployment of the positioning system very time consuming. Using time information as another way for radio-based indoor positioning is challenged by time synchronization among anchor nodes and timestamp accuracy. Besides radio-based positioning methods, intensive research has been conducted to make use of inertial sensors for indoor tracking due to the fast developments of smartphones. However, these methods are normally prone to accumulative errors and might not be available for some applications, such as passive positioning. This thesis focuses on network-based indoor positioning and tracking systems, mainly for passive positioning, which does not require the participation of targets in the positioning process. To achieve high positioning accuracy, we work on some information of radio signals from physical-layer processing, such as timestamps and channel information. The contributions in this thesis can be divided into two parts: time-based positioning and channel information based positioning. First, for time-based indoor positioning (especially for narrow-band signals), we address challenges for compensating synchronization offsets among anchor nodes, designing timestamps with high resolution, and developing accurate positioning methods. Second, we work on range-based positioning methods with channel information to passively locate and track WiFi targets. Targeting less efforts for deployment, we work on range-based methods, which require much less calibration efforts than fingerprinting. By designing some novel enhanced methods for both ranging and positioning (including trilateration for stationary targets and particle filter for mobile targets), we are able to locate WiFi targets with high accuracy solely relying on radio signals and our proposed enhanced particle filter significantly outperforms the other commonly used range-based positioning algorithms, e.g., a traditional particle filter, extended Kalman filter and trilateration algorithms. In addition to using radio signals for passive positioning, we propose a second enhanced particle filter for active positioning to fuse inertial sensor and channel information to track indoor targets, which achieves higher tracking accuracy than tracking methods solely relying on either radio signals or inertial sensors.
Resumo:
Indoor positioning has become an emerging research area because of huge commercial demands for location-based services in indoor environments. Channel State Information (CSI) as fine-grained physical layer information has been recently proposed to achieve high positioning accuracy by using range based methods, e.g., trilateration. In this work, we propose to fuse the CSI-based ranging and velocity estimated from inertial sensors by an enhanced particle filter to achieve highly accurate tracking. The algorithm relies on some enhanced ranging methods and further mitigates the remaining ranging errors by a weighting technique. Additionally, we provide an efficient method to estimate the velocity based on inertial sensors. The algorithms are designed in a network-based system, which uses rather cheap commercial devices as anchor nodes. We evaluate our system in a complex environment along three different moving paths. Our proposed tracking method can achieve 1.3m for mean accuracy and 2.2m for 90% accuracy, which is more accurate and stable than pedestrian dead reckoning and range-based positioning.
Resumo:
Coronary heart disease remains the leading cause of death in the United States and increased blood cholesterol level has been found to be a major risk factor with roots in childhood. Tracking of cholesterol, i.e., the tendency to maintain a particular cholesterol level relative to the rest of the population, and variability in blood lipid levels with increase in age have implications for cholesterol screening and assessment of lipid levels in children for possible prevention of further rise to prevent adulthood heart disease. In this study the pattern of change in plasma lipids, over time, and their tracking were investigated. Also, within-person variance and retest reliability defined as the square root of within-person variance for plasma total cholesterol, HDL-cholesterol, LDL-cholesterol, and triglycerides and their relation to age, sex and body mass index among participants from age 8 to 18 years were investigated. ^ In Project HeartBeat!, 678 healthy children aged 8, 11 and 14 years at baseline were enrolled and examined at 4-monthly intervals for up to 4 years. We examined the relationship between repeated observations by Pearson's correlations. Age- and sex-specific quintiles were calculated and the probability of participants to remain in the uppermost quintile of their respective distribution was evaluated with life table methods. Plasma total cholesterol, HDL-C and LDL-C at baseline were strongly and significantly correlated with measurements at subsequent visits across the sex and age groups. Plasma triglyceride at baseline was also significantly correlated with subsequent measurements but less strongly than was the case for other plasma lipids. The probability to remain in the upper quintile was also high (60 to 70%) for plasma total cholesterol, HDL-C and LDL-C. ^ We used a mixed longitudinal, or synthetic cohort design with continuous observations from age 8 to 18 years to estimate within person variance of plasma total cholesterol, HDL-C, LDL-C and triglycerides. A total of 5809 measurements were available for both cholesterol and triglycerides. A multilevel linear model was used. Within-person variance among repeated measures over up to four years of follow-up was estimated for total cholesterol, HDL-C, LDL-C and triglycerides separately. The relationship of within-person and inter-individual variance with age, sex, and body mass index was evaluated. Likelihood ratio tests were conducted by calculating the deviation of −2log (likelihood) within the basic model and alternative models. The square root of within-person variance provided the retest reliability (within person standard deviation) for plasma total cholesterol, HDL-C, LDL-C and triglycerides. We found 13.6 percent retest reliability for plasma cholesterol, 6.1 percent for HDL-cholesterol, 11.9 percent for LDL-cholesterol and 32.4 percent for triglycerides. Retest reliability of plasma lipids was significantly related with age and body mass index. It increased with increase in body mass index and age. These findings have implications for screening guidelines, as participants in the uppermost quintile tended to maintain their status in each of the age groups during a four-year follow-up. The magnitude of within-person variability of plasma lipids influences the ability to classify children into risk categories recommended by the National Cholesterol Education Program. ^
Resumo:
Arctic sea ice is declining rapidly, making it vital to understand the importance of different types of sea ice for ice-dependent species such as polar bears Ursus maritimus. In this study we used GPS telemetry (25 polar bear tracks obtained in Svalbard, Norway, during spring) and high-resolution synthetic aperture radar (SAR) sea-ice data to investigate fine-scale space use by female polar bears. Space use patterns differed according to reproductive state; females with cubs of the year (COYs) had smaller home ranges and used fast-ice areas more frequently than lone females. First-passage time (FPT) analysis revealed that females with COYs displayed significantly longer FPTs near (<10 km) glacier fronts than in other fast-ice areas; lone females also increased their FPTs in such areas, but they also frequently used drifting pack ice. These results clearly demonstrate the importance of fast-ice areas, in particular close to glacier fronts, especially for females with COYs. Access to abundant and predictable prey (ringed seal pups), energy conservation and reluctance to cross large open water areas are possible reasons for the observed patterns. However, glacier fronts are retracting in Svalbard, and declines in land-fast ice have been notable over the past decade. The eventual disappearance of these important habitats might become critical for the survival of polar bear cubs in Svalbard and other regions with similar habitat characteristics. Given the relatively small size of many fast-ice areas in Svalbard, the results observed in this study would not have been revealed using less accurate location data or lower-resolution sea-ice data.