994 resultados para Toxicology.


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mycotoxin zearalenone (ZEN) is a secondary metabolite of fungi which is produced by certain species of the genus Fusarium and can occur in cereals and other plant products. Reporter gene assays incorporating natural steroid receptors and the H295R steroidogenesis assay have been implemented to assess the endocrine disrupting activity of ZEN and its metabolites -zearalenol (-ZOL) and -zearalenol (-ZOL). -ZOL exhibited the strongest estrogenic potency (EC50 0.022 ± 0.001 nM), slightly less potent than 17- estradiol (EC50 0.015 ± 0.002 nM). ZEN was ~70 times less potent than -ZOL and twice as potent as -ZOL. Binding of progesterone to the progestagen receptor was shown to be synergistically increased in the presence of ZEN, -ZOL or -ZOL. ZEN, -ZOL or -ZOL increased production of progesterone, estradiol, testosterone and cortisol hormones in the H295R steroidogenesis assay, with peak productions at 10 M. At 100 M, cell viability decreased and levels of hormones were significantly reduced except for progesterone. -ZOL increased estradiol concentrations more than -ZOL or ZEN, with a maximum effect at 10 M, with -ZOL (562 ± 59 pg/ml) > -ZOL (494 ± 60 pg/ml) > ZEN (375 ± 43 pg/ml). The results indicate that ZEN and its metabolites can act as potential endocrine disruptors at the level of nuclear receptor signalling and by altering hormone production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zearalenone (ZEN) is a mycotoxin with endocrine disrupting effects having vast economic implications in e.g. pig farming. Structurally, ZEN resembles 17b-estradiol, and thus is able to bind to estrogen receptors (ER) in target cells. Because of this, it is also classified as a non-steroidal estrogen, a phytoestrogen, a mycoestrogen, and a growth promoter. Quantitative proteomic analysis was undertaken using stable-isotope labeling by amino acids in cell culture (SILAC) upon exposure of the steroidogenesis cell model H295R with ZEN to elucidate its effect on protein regulation. ZEN significantly regulated 21 proteins, including proteins with known endocrine disrupting effects and several oncogenes. In addition, network analysis using Ingenuity Pathway Analysis showed that ZEN affected the oxidative phosphorylation pathway and the mitochondrial dysfunction pathway, both previously reported to be involved in endocrine dysfunction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective of the study: To determine the extent and nature of unlicensed/off-label prescribing patterns in hospitalised children in Palestine. Setting: Four paediatric wards in two public health system hospitals in Palestine [Caritas children’s hospital (Medical and neonatal intensive care units) and Rafidia general hospital (Medical and surgical units)]. Method: A prospective survey of drugs administered to infants and children <18 years old was carried out over a five-week period in the four paediatric wards. Main outcome measure: Drug-licensing status of all prescriptions was determined according to the Palestinian Registered Product List and the Physician’s Desk Reference. Results: Overall, 917 drug prescriptions were administered to 387 children. Of all drug prescriptions, 528 (57.5%) were licensed for use in children; 65 (7.1%) were unlicensed; and 324 (35.3%) were used off-label. Of all children, 49.6% received off-label prescriptions, 10.1% received unlicensed medications and 8.2% received both. Seventy-two percent of off-label drugs and 66% of unlicensed drugs were prescribed for children <2 years. Multivariate analysis showed that patients who were admitted to the neonatal intensive care unit and infants aged 0–1 years were most likely to receive a greater number of off-label or unlicensed medications (OR 1.80; 95% CI 1.03–3.59 and OR 1.99; 95% CI 0.88–3.73, respectively). Conclusion: The present findings confirmed the elevated prevalence of unlicensed and off-label paediatric drugs use in Palestine and strongly support the need to perform well designed clinical studies in children.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Triphenylmethanes - Malachite Green (MG), Crystal Violet (CV) and Brilliant Green (BC) are dyes with known genotoxic and carcinogenic properties. Apart from being illegally used in aquaculture for treatment of fish diseases they are also applied in industry such as paper production to colour paper towels widely used in hospitals, factories and other locations for hand drying after washing. The present study provides evidence that the triphenylmethane dye (BC) present in green paper towels can migrate through the skin even when the exposure time is short (30-300 s). The transfer of the dye from the towel to food (fish) was also studied and a high amount of colour was found to migrate during overnight exposure. The risk to humans associated with these two dye transfer studies was assessed using a 'margin of exposure approach' on the basis of the toxicological data available for the closely related dye MG and its metabolite Leucomalachite Green. The data indicated that the risk associated with the use of triphenylmethane containing paper towels is of a similar proportion to the risk associated with consumption of fish contaminated with these dyes due to the illegal application in aquaculture. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While RNA interference (RNAi) has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i) Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (ds)RNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii) The Argonautes (AGOs) responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii) Secondary Argonautes (SAGOs) are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv) All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v) In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research genetic tool in nematodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

a- and b-zearalenol (a-ZOL and b-ZOL, respectively) are metabolites of the mycotoxin zearalenone (ZEN). All three individual mycotoxins have shown to be biological active i.e. being estrogenic and able to stimulate cellular proliferation albeit at different strengths. In this work, cytosol protein expression was determined by using stable-isotope labelling by amino acids in cell culture (SILAC) upon exposure of a-ZOL and b-ZOL to the steroidogenesis cell model H295R. A total of 14 and 5 individual proteins were found to be significantly regulated by a-ZOL and b-ZOL, respectively. Interestingly, there were no common protein regulations by the metabolites or the parent mycotoxin ZEN. Furthermore, the regulated proteins were assigned to networks and groups of actions that also differed from one another suggesting that the three individual mycotoxins may have unique biological activities.

Relevância:

10.00% 10.00%

Publicador: