892 resultados para Towards Seamless Integration of Geoscience Models and Data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A road traffic noise prediction model (ASJ MODEL-1998) has been integrated with a road traffic simulator (AVENUE) to produce the Dynamic areawide Road traffic NoisE simulator-DRONE. This traffic-noise-GIS based integrated tool is upgraded to predict noise levels in built-up areas. The integration of traffic simulation with a noise model provides dynamic access to traffic flow characteristics and hence automated and detailed predictions of traffic noise. The prediction is not only on the spatial scale but also on temporal scale. The linkage with GIS gives a visual representation to noise pollution in the form of dynamic areawide traffic noise contour maps. The application of DRONE on a real world built-up area is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved. This paper describes the development of detection algorithms and the evaluation of a real-time flight ready hardware implementation of a vision-based collision detection system suitable for fixed-wing small/medium size UAS. In particular, this paper demonstrates the use of Hidden Markov filter to track and estimate the elevation (β) and bearing (α) of the target, compares several candidate graphic processing hardware choices, and proposes an image based visual servoing approach to achieve collision avoidance

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper outlines a method of constructing narratives about an individual’s self-efficacy. Self-efficacy is defined as “people’s judgments of their capabilities to organise and execute courses of action required to attain designated types of performances” (Bandura, 1986, p. 391), and as such represents a useful construct for thinking about personal agency. Social cognitive theory provides the theoretical framework for understanding the sources of self-efficacy, that is, the elements that contribute to a sense of self-efficacy. The narrative approach adopted offers an alternative to traditional, positivist psychology, characterised by a preoccupation with measuring psychological constructs (like self-efficacy) by means of questionnaires and scales. It is argued that these instruments yield scores which are somewhat removed from the lived experience of the person—respondent or subject—associated with the score. The method involves a cyclical and iterative process using qualitative interviews to collect data from participants – four mature aged university students. The method builds on a three-interview procedure designed for life history research (Dolbeare & Schuman, cited in Seidman, 1998). This is achieved by introducing reflective homework tasks, as well as written data generated by research participants, as they are guided in reflecting on those experiences (including behaviours, cognitions and emotions) that constitute a sense of self-efficacy, in narrative and by narrative. The method illustrates how narrative analysis is used “to produce stories as the outcome of the research” (Polkinghorne, 1995, p.15), with detail and depth contributing to an appreciation of the ‘lived experience’ of the participants. The method is highly collaborative, with narratives co-constructed by researcher and research participants. The research outcomes suggest an enhanced understanding of self-efficacy contributes to motivation, application of effort and persistence in overcoming difficulties. The paper concludes with an evaluation of the research process by the students who participated in the author’s doctoral study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We advance the proposition that dynamic stochastic general equilibrium (DSGE) models should not only be estimated and evaluated with full information methods. These require that the complete system of equations be specified properly. Some limited information analysis, which focuses upon specific equations, is therefore likely to be a useful complement to full system analysis. Two major problems occur when implementing limited information methods. These are the presence of forward-looking expectations in the system as well as unobservable non-stationary variables. We present methods for dealing with both of these difficulties, and illustrate the interaction between full and limited information methods using a well-known model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advances in computer hardware and software development techniques in the past 25 years, digital computer simulation of train movement and traction systems has been widely adopted as a standard computer-aided engineering tool [1] during the design and development stages of existing and new railway systems. Simulators of different approaches and scales are used extensively to investigate various kinds of system studies. Simulation is now proven to be the cheapest means to carry out performance predication and system behaviour characterisation. When computers were first used to study railway systems, they were mainly employed to perform repetitive but time-consuming computational tasks, such as matrix manipulations for power network solution and exhaustive searches for optimal braking trajectories. With only simple high-level programming languages available at the time, full advantage of the computing hardware could not be taken. Hence, structured simulations of the whole railway system were not very common. Most applications focused on isolated parts of the railway system. It is more appropriate to regard those applications as primarily mechanised calculations rather than simulations. However, a railway system consists of a number of subsystems, such as train movement, power supply and traction drives, which inevitably contains many complexities and diversities. These subsystems interact frequently with each other while the trains are moving; and they have their special features in different railway systems. To further complicate the simulation requirements, constraints like track geometry, speed restrictions and friction have to be considered, not to mention possible non-linearities and uncertainties in the system. In order to provide a comprehensive and accurate account of system behaviour through simulation, a large amount of data has to be organised systematically to ensure easy access and efficient representation; the interactions and relationships among the subsystems should be defined explicitly. These requirements call for sophisticated and effective simulation models for each component of the system. The software development techniques available nowadays allow the evolution of such simulation models. Not only can the applicability of the simulators be largely enhanced by advanced software design, maintainability and modularity for easy understanding and further development, and portability for various hardware platforms are also encouraged. The objective of this paper is to review the development of a number of approaches to simulation models. Attention is, in particular, given to models for train movement, power supply systems and traction drives. These models have been successfully used to enable various ‘what-if’ issues to be resolved effectively in a wide range of applications, such as speed profiles, energy consumption, run times etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - This paper seeks to examine the complex relationships between urban planning, infrastructure management, sustainable urban development, and to illustrate why there is an urgent need for local governments to develop a robust planning support system which integrates with advance urban computer modelling tools to facilitate better infrastructure management and improve knowledge sharing between the community, urban planners, engineers and decision makers. Design/methodology/approach - The methods used in this paper includes literature review and practical project case observations. Originality/value - This paper provides an insight of how the Brisbane's planning support system established by Brisbane City Council has significantly improved the effectiveness of urban planning, infrastructure management and community engagement through better knowledge management processes. Practical implications - This paper presents a practical framework for setting up a functional planning support system within local government. The integration of the Brisbane Urban Growth model, Virtual Brisbane and the Brisbane Economic Activity Monitoring (BEAM) database have proven initially successful to provide a dynamic platform to assist elected officials, planners and engineers to understand the limitations of the local environment, its urban systems and the planning implications on a city. With the Brisbane's planning support system, planners and decision makers are able to provide better planning outcomes, policy and infrastructure that adequately address the local needs and achieve sustainable spatial forms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present rate of technological advance continues to place significant demands on data storage devices. The sheer amount of digital data being generated each year along with consumer expectations, fuels these demands. At present, most digital data is stored magnetically, in the form of hard disk drives or on magnetic tape. The increase in areal density (AD) of magnetic hard disk drives over the past 50 years has been of the order of 100 million times, and current devices are storing data at ADs of the order of hundreds of gigabits per square inch. However, it has been known for some time that the progress in this form of data storage is approaching fundamental limits. The main limitation relates to the lower size limit that an individual bit can have for stable storage. Various techniques for overcoming these fundamental limits are currently the focus of considerable research effort. Most attempt to improve current data storage methods, or modify these slightly for higher density storage. Alternatively, three dimensional optical data storage is a promising field for the information storage needs of the future, offering very high density, high speed memory. There are two ways in which data may be recorded in a three dimensional optical medium; either bit-by-bit (similar in principle to an optical disc medium such as CD or DVD) or by using pages of bit data. Bit-by-bit techniques for three dimensional storage offer high density but are inherently slow due to the serial nature of data access. Page-based techniques, where a two-dimensional page of data bits is written in one write operation, can offer significantly higher data rates, due to their parallel nature. Holographic Data Storage (HDS) is one such page-oriented optical memory technique. This field of research has been active for several decades, but with few commercial products presently available. Another page-oriented optical memory technique involves recording pages of data as phase masks in a photorefractive medium. A photorefractive material is one by which the refractive index can be modified by light of the appropriate wavelength and intensity, and this property can be used to store information in these materials. In phase mask storage, two dimensional pages of data are recorded into a photorefractive crystal, as refractive index changes in the medium. A low-intensity readout beam propagating through the medium will have its intensity profile modified by these refractive index changes and a CCD camera can be used to monitor the readout beam, and thus read the stored data. The main aim of this research was to investigate data storage using phase masks in the photorefractive crystal, lithium niobate (LiNbO3). Firstly the experimental methods for storing the two dimensional pages of data (a set of vertical stripes of varying lengths) in the medium are presented. The laser beam used for writing, whose intensity profile is modified by an amplitudemask which contains a pattern of the information to be stored, illuminates the lithium niobate crystal and the photorefractive effect causes the patterns to be stored as refractive index changes in the medium. These patterns are read out non-destructively using a low intensity probe beam and a CCD camera. A common complication of information storage in photorefractive crystals is the issue of destructive readout. This is a problem particularly for holographic data storage, where the readout beam should be at the same wavelength as the beam used for writing. Since the charge carriers in the medium are still sensitive to the read light field, the readout beam erases the stored information. A method to avoid this is by using thermal fixing. Here the photorefractive medium is heated to temperatures above 150�C; this process forms an ionic grating in the medium. This ionic grating is insensitive to the readout beam and therefore the information is not erased during readout. A non-contact method for determining temperature change in a lithium niobate crystal is presented in this thesis. The temperature-dependent birefringent properties of the medium cause intensity oscillations to be observed for a beam propagating through the medium during a change in temperature. It is shown that each oscillation corresponds to a particular temperature change, and by counting the number of oscillations observed, the temperature change of the medium can be deduced. The presented technique for measuring temperature change could easily be applied to a situation where thermal fixing of data in a photorefractive medium is required. Furthermore, by using an expanded beam and monitoring the intensity oscillations over a wide region, it is shown that the temperature in various locations of the crystal can be monitored simultaneously. This technique could be used to deduce temperature gradients in the medium. It is shown that the three dimensional nature of the recording medium causes interesting degradation effects to occur when the patterns are written for a longer-than-optimal time. This degradation results in the splitting of the vertical stripes in the data pattern, and for long writing exposure times this process can result in the complete deterioration of the information in the medium. It is shown in that simply by using incoherent illumination, the original pattern can be recovered from the degraded state. The reason for the recovery is that the refractive index changes causing the degradation are of a smaller magnitude since they are induced by the write field components scattered from the written structures. During incoherent erasure, the lower magnitude refractive index changes are neutralised first, allowing the original pattern to be recovered. The degradation process is shown to be reversed during the recovery process, and a simple relationship is found relating the time at which particular features appear during degradation and recovery. A further outcome of this work is that the minimum stripe width of 30 ìm is required for accurate storage and recovery of the information in the medium, any size smaller than this results in incomplete recovery. The degradation and recovery process could be applied to an application in image scrambling or cryptography for optical information storage. A two dimensional numerical model based on the finite-difference beam propagation method (FD-BPM) is presented and used to gain insight into the pattern storage process. The model shows that the degradation of the patterns is due to the complicated path taken by the write beam as it propagates through the crystal, and in particular the scattering of this beam from the induced refractive index structures in the medium. The model indicates that the highest quality pattern storage would be achieved with a thin 0.5 mm medium; however this type of medium would also remove the degradation property of the patterns and the subsequent recovery process. To overcome the simplistic treatment of the refractive index change in the FD-BPM model, a fully three dimensional photorefractive model developed by Devaux is presented. This model shows significant insight into the pattern storage, particularly for the degradation and recovery process, and confirms the theory that the recovery of the degraded patterns is possible since the refractive index changes responsible for the degradation are of a smaller magnitude. Finally, detailed analysis of the pattern formation and degradation dynamics for periodic patterns of various periodicities is presented. It is shown that stripe widths in the write beam of greater than 150 ìm result in the formation of different types of refractive index changes, compared with the stripes of smaller widths. As a result, it is shown that the pattern storage method discussed in this thesis has an upper feature size limit of 150 ìm, for accurate and reliable pattern storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean processes are dynamic and complex events that occur on multiple different spatial and temporal scales. To obtain a synoptic view of such events, ocean scientists focus on the collection of long-term time series data sets. Generally, these time series measurements are continually provided in real or near-real time by fixed sensors, e.g., buoys and moorings. In recent years, an increase in the utilization of mobile sensor platforms, e.g., Autonomous Underwater Vehicles, has been seen to enable dynamic acquisition of time series data sets. However, these mobile assets are not utilized to their full capabilities, generally only performing repeated transects or user-defined patrolling loops. Here, we provide an extension to repeated patrolling of a designated area. Our algorithms provide the ability to adapt a standard mission to increase information gain in areas of greater scientific interest. By implementing a velocity control optimization along the predefined path, we are able to increase or decrease spatiotemporal sampling resolution to satisfy the sampling requirements necessary to properly resolve an oceanic phenomenon. We present a path planning algorithm that defines a sampling path, which is optimized for repeatability. This is followed by the derivation of a velocity controller that defines how the vehicle traverses the given path. The application of these tools is motivated by an ongoing research effort to understand the oceanic region off the coast of Los Angeles, California. The computed paths are implemented with the computed velocities onto autonomous vehicles for data collection during sea trials. Results from this data collection are presented and compared for analysis of the proposed technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Harmful Algal Blooms (HABs) have become an important environmental concern along the western coast of the United States. Toxic and noxious blooms adversely impact the economies of coastal communities in the region, pose risks to human health, and cause mortality events that have resulted in the deaths of thousands of fish, marine mammals and seabirds. One goal of field-based research efforts on this topic is the development of predictive models of HABs that would enable rapid response, mitigation and ultimately prevention of these events. In turn, these objectives are predicated on understanding the environmental conditions that stimulate these transient phenomena. An embedded sensor network (Fig. 1), under development in the San Pedro Shelf region off the Southern California coast, is providing tools for acquiring chemical, physical and biological data at high temporal and spatial resolution to help document the emergence and persistence of HAB events, supporting the design and testing of predictive models, and providing contextual information for experimental studies designed to reveal the environmental conditions promoting HABs. The sensor platforms contained within this network include pier-based sensor arrays, ocean moorings, HF radar stations, along with mobile sensor nodes in the form of surface and subsurface autonomous vehicles. FreewaveTM radio modems facilitate network communication and form a minimally-intrusive, wireless communication infrastructure throughout the Southern California coastal region, allowing rapid and cost-effective data transfer. An emerging focus of this project is the incorporation of a predictive ocean model that assimilates near-real time, in situ data from deployed Autonomous Underwater Vehicles (AUVs). The model then assimilates the data to increase the skill of both nowcasts and forecasts, thus providing insight into bloom initiation as well as the movement of blooms or other oceanic features of interest (e.g., thermoclines, fronts, river discharge, etc.). From these predictions, deployed mobile sensors can be tasked to track a designated feature. This focus has led to the creation of a technology chain in which algorithms are being implemented for the innovative trajectory design for AUVs. Such intelligent mission planning is required to maneuver a vehicle to precise depths and locations that are the sites of active blooms, or physical/chemical features that might be sources of bloom initiation or persistence. The embedded network yields high-resolution, temporal and spatial measurements of pertinent environmental parameters and resulting biology (see Fig. 1). Supplementing this with ocean current information and remotely sensed imagery and meteorological data, we obtain a comprehensive foundation for developing a fundamental understanding of HAB events. This then directs labor- intensive and costly sampling efforts and analyses. Additionally, we provide coastal municipalities, managers and state agencies with detailed information to aid their efforts in providing responsible environmental stewardship of their coastal waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Process models are used by information professionals to convey semantics about the business operations in a real world domain intended to be supported by an information system. The understandability of these models is vital to them being used for information systems development. In this paper, we examine two factors that we predict will influence the understanding of a business process that novice developers obtain from a corresponding process model: the content presentation form chosen to articulate the business domain, and the user characteristics of the novice developers working with the model. Our experimental study provides evidence that novice developers obtain similar levels of understanding when confronted with an unfamiliar or a familiar process model. However, previous modeling experience, the use of English as a second language, and previous work experience in BPM are important influencing factors of model understanding. Our findings suggest that education and research in process modeling should increase the focus on human factors and how they relate to content and content presentation formats for different modeling tasks. We discuss implications for practice and research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term Design is used to describe a wide range of activities. Like the term innovation, it is often used to describe both an activity and an outcome. Many products and services are often described as being designed, as they describe a conscious process of linking form and function. Alternatively, the many and varied processes of design are often used to describe a cost centre of an organisation to demonstrate a particular competency. However design is often not used to describe the ‘value’ it provides to an organisation and more importantly the ‘value’ it provides to both existing and future customers. Design Led Innovation bridges this gap. Design Led Innovation is a process of creating a sustainable competitive advantage, by radically changing the customer value proposition. A conceptual model has been developed to assist organisations apply and embed design in a company’s vision, strategy, culture, leadership and development processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of instructors have recently adopted social network sites (SNSs) for learning. However, the learning design of SNSs often remains at a preliminary level similar to a personal log book because it does not properly include reflective learning elements such as individual reflection and collaboration. This article looks at the reflective learning process and the public writing process as a way of improving the quality of reflective learning on SNSs. It proposes a reflective learning model on SNSs based on two key pedagogical concepts for social networking: individual expression and collaborative connection. It is expected that the model would be helpful for instructors in designing a reflective learning process on SNSs in an effective and flexible way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses major obstacles for the adoption of low cost level crossing warning devices (LCLCWDs) in Australia and reviews those trialed in Australia and internationally. The argument for the use of LCLCWDs is that for a given investment, more passive level crossings can be treated, therefore increasing safety benefits across the rail network. This approach, in theory, reduces risk across the network by utilizing a combination of low-cost and conventional level crossing interventions, similar to what is done in the road environment. This paper concludes that in order to determine if this approach can produce better safety outcomes than the current approach, involving the incremental upgrade of level crossings with conventional interventions, it is necessary to perform rigorous risk assessments and cost-benefit analyses of LCLCWDs. Further research is also needed to determine how best to differentiate less reliable LCCLWDs from conventional warning devices through the use of different warning signs and signals. This paper presents a strategy for progressing research and development of LCLCWDs and details how the Cooperative Research Centre (CRC) for Rail Innovation is fulfilling this strategy through the current and future affordable level crossing projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics education literature has called for an abandonment of ontological and epistemological ideologies that have often divided theory-based practice. Instead, a consilience of theories has been sought which would leverage the strengths of each learning theory and so positively impact upon contemporary educational practice. This research activity is based upon Popper’s notion of three knowledge worlds which differentiates the knowledge shared in a community from the personal knowledge of the individual, and Bereiter’s characterisation of understanding as the individual’s relationship to tool-like knowledge. Using these notions, a re-conceptualisation of knowledge and understanding and a subsequent re-consideration of learning theories are proposed as a way to address the challenge set by literature. Referred to as the alternative theoretical framework, the proposed theory accounts for the scaffolded transformation of each individual’s unique understanding, whilst acknowledging the existence of a body of domain knowledge shared amongst participants in a scientific community of practice. The alternative theoretical framework is embodied within an operational model that is accompanied by a visual nomenclature with which to describe consensually developed shared knowledge and personal understanding. This research activity has sought to iteratively evaluate this proposed theory through the practical application of the operational model and visual nomenclature to the domain of early-number counting, addition and subtraction. This domain of mathematical knowledge has been comprehensively analysed and described. Through this process, the viability of the proposed theory as a tool with which to discuss and thus improve the knowledge and understanding with the domain of mathematics has been validated. Putting of the proposed theory into practice has lead to the theory’s refinement and the subsequent achievement of a solid theoretical base for the future development of educational tools to support teaching and learning practice, including computer-mediated learning environments. Such future activity, using the proposed theory, will advance contemporary mathematics educational practice by bringing together the strengths of cognitivist, constructivist and post-constructivist learning theories.