945 resultados para Tigerstedt, P. M. A.: Adaptation in plant breeding
Resumo:
Pseudomonas fluorescens are rhizobacteria known for their biocontrol properties. Several antimicrobial functions are crucial for this process, and the experiments described here investigate the modulation of their expression during the plant-bacterium interaction. The role of a LuxR family regulator in interkingdom signaling has been investigated using genome-scale transcriptome analysis, gene promoter studies in vivo and in vitro, biocontrol assays, and response to plant compounds. PsoR, a LuxR solo or orphan regulator of P. fluorescens, was identified. PsoR is solubilized and activates a lux-box-containing promoter only in the presence of macerated plants, suggesting the presence of a plant molecule(s) that most likely binds to PsoR. Gene expression profiles revealed that genes involved in the inhibition of plant pathogens were affected by PsoR, including a chitinase gene, iron metabolism genes, and biosynthetic genes of antifungal compounds. 2,4-Diacetylphloroglucinol production is PsoR dependent both in vitro and in vivo. psoR mutants were significantly reduced for their ability to protect wheat plants from root rot, and damping-off caused by Pythium ultimum infection. PsoR most likely senses a molecule(s) in the plant and modulates expression of genes that have a role in biocontrol. PsoR and related proteins form a subfamily of LuxR family regulators in plant-associated bacteria.
Resumo:
Trends in food availability in Switzerland were assessed using the Food and Agricultural Organization food balance sheets for the period 1961-2007. A relatively stable trend in the daily caloric supply was found: 3545 kcal/day in 1961 and 3465 kcal/day in 2007. Calories associated with carbohydrates decreased (slope±s.e.: -1.1±0.2 kcal/day/year), namely regarding cereals (-2.9±0.6 kcal/day/year) and fruit (-1.5±0.1 kcal/day/year), while the availability of sugars increased (1.2±0.5 kcal/day/year). In 1961, protein, fat, carbohydrates and alcohol represented 10.6, 33.5, 50.0 and 5.9% of total caloric supply, respectively; in 2007, the values were 10.8, 40.3, 43.7 and 5.2%. In 1961, palm, groundnut and sunflowerseed oil represented 3.4, 30.7 and 5.3% of total vegetable oils, respectively; in 2007, the values were 10.4, 3.7 and 31.6%. We conclude that between 1961 and 2007 total caloric availability remained relatively stable in Switzerland; the health effects of the increased and differing fat availability should be evaluated.
Resumo:
AimSmall body size in Madagascar's dwarf and mouse lemurs (Cheirogaleidae) is generally viewed as primitive. We investigated the evolution of body size in this family and in its sister-taxon, the Lepilemuridae, from phylogenetic, ontogenetic and adaptive perspectives. LocationMadagascar. MethodsWe used a phylogenetic method to reconstruct the evolution of body size in lemurs, and allometric regression models of gestation periods and static and growth allometries in Cheirogaleidae and Lepilemuridae to test the hypothesis that dwarfing occurred as a result of truncated ontogeny (progenesis). We also examined adaptive hypotheses relating body size to environmental variability, life history, seasonality of reproduction, hypothermy (use of torpor), and a diet rich in plant exudates. ResultsOur results indicated that cheirogaleids experienced at least four independent events of body size reduction from an ancestor as large as living Lepilemuridae, by means of progenesis. Our interpretation is supported by the paedomorphic appearance and parallel ontogenetic trajectories of the dwarf taxa, as well as their very short gestation periods and increased fecundity. Lepilemur species that occupy more predictable environments are significantly larger than those occupying unpredictable habitats. Main conclusionsCheirogaleidae appear to be paedomorphic dwarfs, a consequence of progenesis, probably as an adaptation to high environmental unpredictability. Although the capacity to use hypothermy is related to small body size, this advantage is unlikely to have driven dwarfing in cheirogaleids. We propose that gummmivory/exudativory co-evolved with body size reduction in this clade, probably from a folivorous ancestor. Their small size is derived, and their suitability as models for the ancestral primate' is therefore dubious.
Resumo:
Two bacterial strains that amplified part of the nifH gene, RP1p and RP2p, belonging to the genus Enterobacter and Serratia, were isolated from the rhizoplane of Lupinus albescens. These bacteria are Gram-negative, rod-shaped, motile, facultative anaerobic, and fast-growing; the colonies reach diameters of 3-4 mm within 24 h of incubation at 28 ºC. The bacteria were also able to grow at temperatures as high as 40 ºC, in the presence of high (2-3 % w/v) NaCl concentrations and pH 4 -10. Strain RP1p was able to utilize 10 of 14 C sources, while RP2p utilized nine. The isolates produced siderophores and indolic compounds, but none of them was able to solubilize phosphate. Inoculation of L. albescens with RP1p and RP2p strains resulted in a significant increase in plant dry matter, indicating the plant-growth-promoting abilities of these bacteria.
Resumo:
Invasive studies suggest that healthy children living at high altitude display pulmonary hypertension, but the data to support this assumption are sparse. Nitric oxide (NO) synthesized by the respiratory epithelium regulates pulmonary artery pressure, and its synthesis was reported to be increased in Aymara high-altitude dwellers. We hypothesized that pulmonary artery pressure will be lower in Aymara children than in children of European ancestry at high altitude, and that this will be related to increased respiratory NO. We therefore compared pulmonary artery pressure and exhaled NO (a marker of respiratory epithelial NO synthesis) between large groups of healthy children of Aymara (n = 200; mean +/- SD age, 9.5 +/- 3.6 years) and European ancestry (n = 77) living at high altitude (3,600 to 4,000 m). We also studied a group of European children (n = 29) living at low altitude. The systolic right ventricular to right atrial pressure gradient in the Aymara children was normal, even though significantly higher than the gradient measured in European children at low altitude (22.5 +/- 6.1 mm Hg vs 17.7 +/- 3.1 mm Hg, p < 0.001). In children of European ancestry studied at high altitude, the pressure gradient was 33% higher than in the Aymara children (30.0 +/- 5.3 mm Hg vs 22.5 +/- 6.1 mm Hg, p < 0.0001). In contrast to what was expected, exhaled NO tended to be lower in Aymara children than in European children living at the same altitude (12.4 +/- 8.8 parts per billion [ppb] vs 16.1 +/- 11.1 ppb, p = 0.06) and was not related to pulmonary artery pressure in either group. Aymara children are protected from hypoxic pulmonary hypertension at high altitude. This protection does not appear to be related to increased respiratory NO synthesis.
Resumo:
Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis) in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and (lignin+polyphenol)/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD), the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA), there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1). Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants.
Resumo:
Balanced fertilization is important for plant growth. There is little information on physic nut (Jatropha curcas L.) and tests with the fertilization of the species are very recent. This study evaluated the initial growth of physic nut seedlings in response to NPK rates to Quartzarenic Neossol in a greenhouse and estimated P and K critical soil levels and N, P and K in shoot dry matter after 120 days of evaluation. The treatments were arranged in a randomized, fractional factorial design (4 x 4 x 4)½, totalizing 32 treatments with three replicates, 96 experimental plots and N rates (0, 75, 150 and 300 mg dm-3) as urea; P rates (0, 45, 90 and 180 mg dm-3) as triple superphosphate and K rates (0, 50, 100 and 200 mg dm-3) as potassium chloride. After 120 days, the plants were harvested and some variables evaluated: plant height, stem diameter, shoot and root dry weight, macro and micronutrient levels in plant shoots, and soil chemical properties. The physic nut seedlings responded to NPK fertilizer in the initial growth phase; the response to N was negative. The recommended P and K rates were 25 and 67 mg dm-3, respectively. The critical levels, corresponding to the recommended P rate were 13 and 74 mg dm-3 for K in soil (Mehlich-1). The N, P and K levels in the shoot dry matter of physic nut were 37.4, 2.1 and 35.7 g kg-1, respectively.
Resumo:
Studies on microbial activity and biomass in forestry plantations often overlook the role of litter, typically focusing instead on soil nutrient contents to explain plant and microorganism development. However, since the litter is a significant source of recycled nutrients that affect nutrient dynamics in the soil, litter composition may be more strongly correlated with forest growth and development than soil nutrient contents. This study aimed to test this hypothesis by examining correlations between soil C, N, and P; litter C, N, P, lignin content, and polyphenol content; and microbial biomass and activity in pure and mixed second-rotation plantations of Eucalyptus grandis and Acacia mangium before and after senescent leaf drop. The numbers of cultivable fungi and bacteria were also estimated. All properties were correlated with litter C, N, P, lignin and polyphenols, and with soil C and N. We found higher microbial activity (CO2 evolution) in litter than in soil. In the E. grandis monoculture before senescent leaf drop, microbial biomass C was 46 % higher in litter than in soil. After leaf drop, this difference decreased to 16 %. In A. mangium plantations, however, microbial biomass C was lower in litter than in soil both before and after leaf drop. Microbial biomass N of litter was approximately 94 % greater than that of the soil in summer and winter in all plantations. The number of cultivable fungi and bacteria increased after leaf drop, especially so in the litter. Fungi were also more abundant in the E. grandis litter. In general, the A. mangium monoculture was associated with higher levels of litter lignin and N, especially after leaf drop. In contrast, the polyphenol and C levels in E. grandis monoculture litter were higher after leaf drop. These properties were negatively correlated with total soil C and N. Litter in the mixed stands had lower C:N and C:P ratios and higher N, P, and C levels in the microbial biomass. This suggests more effective nutrient cycling in mixed plantations in the long term, greater stimulation of microbial activity in litter and soil, and a more sustainable system in general.
Resumo:
The majority of terrestrial plants live in association with symbiotic fungi that facilitate mineral nutrient uptake. The oldest and most prevalent of these associations are the arbuscular mycorrhizal (AM) symbioses that first evolved approximately 400 million years ago, coinciding with the appearance of the first land plants. Crop domestication, in comparison, is a relatively recent event, beginning approximately 10000 years ago. How has the dramatic change from wild to cultivated ecosystems impacted AM associations, and do these ancient symbioses potentially have a role in modern agriculture? Here, we review recent advances in AM research and the use of breeding approaches to generate new crop varieties that enhance the agronomic potential of AM associations.
Resumo:
Fertilization and/or the accumulation of organic matter from plant residues can influence the composition of soil and litter community. The goal of this study was to evaluate the effects of P and K fertilization on total faunal and nematode faunal composition and richness in plant litter and soil for 360 days in an area reforested with Acacia auriculiformis (A. Cunn), located in the municipality of Conceição de Macabu in the State of Rio de Janeiro. For each treatment (fertilized and unfertilized plots), samples of litter and soil (to a depth of 5 cm) were collected and transferred into a Berlese-Tüllgren funnels for the extraction of fauna. Mesofauna and macrofauna were quantified, and the major taxa identified. Nematodes were extracted by centrifugal flotation in sucrose solution and identified according to feeding habits. Density (number of individuals m-2) of total fauna, microphages, social insects and saprophages varied significantly per treatment and sampling time in both litter and soil. The total number of individuals collected was 5,127, and the total number of nematodes 894. Phosphorus and potassium fertilization resulted in an increase in total fauna density and richness in the litter due to an increased abundance of social insects, saprophages and herbivores. In the soil, fertilization increased the saprophage and predator densities. Saprophages were the predominant taxa in the litter, while social insects (Formicidae) prevailed in the soil. Litter nematode populations were favored by mineral fertilization. Bacteriophages were the predominant nematode group in both litter and soil.
Resumo:
Information underlying analyses of coffee fertilization systems should consider both the soil and the nutritional status of plants. This study investigated the spatial relationship between phosphorus (P) levels in coffee plant tissues and soil chemical and physical properties. The study was performed using two arabica and one canephora coffee variety. Sampling grids were established in the areas, and the points georeferenced. The assessed properties of the soil were levels of available phosphorus (P-Mehlich), remaining phosphorus (P-rem) and particle size, and of the plant tissue, phosphorus levels (foliar P). The data were subjected to descriptive statistical analysis, correlation analysis, cluster analysis, and probability tests. Geostatistical and trend analyses were only performed for pairs of variables with significant linear correlation. The spatial variability for foliar P content was high for the variety Catuai and medium for the other evaluated plants. Unlike P-Mehlich, the variability in P-rem of the soil indicated the nutritional status of this nutrient in the plant.
Resumo:
In comparison with other micronutrients, the levels of nickel (Ni) available in soils and plant tissues are very low, making quantification very difficult. The objective of this paper is to present optimized determination methods of Ni availability in soils by extractants and total content in plant tissues for routine commercial laboratory analyses. Samples of natural and agricultural soils were processed and analyzed by Mehlich-1 extraction and by DTPA. To quantify Ni in the plant tissues, samples were digested with nitric acid in a closed system in a microwave oven. The measurement was performed by inductively coupled plasma/optical emission spectrometry (ICP-OES). There was a positive and significant correlation between the levels of available Ni in the soils subjected to Mehlich-1 and DTPA extraction, while for plant tissue samples the Ni levels recovered were high and similar to the reference materials. The availability of Ni in some of the natural soil and plant tissue samples were lower than the limits of quantification. Concentrations of this micronutrient were higher in the soil samples in which Ni had been applied. Nickel concentration differed in the plant parts analyzed, with highest levels in the grains of soybean. The grain, in comparison with the shoot and leaf concentrations, were better correlated with the soil available levels for both extractants. The methods described in this article were efficient in quantifying Ni and can be used for routine laboratory analysis of soils and plant tissues.
Resumo:
ABSTRACT Cassava (Manihot esculenta Crantz) is a highly mycotrophic crop, and prior soil cover may affect the density of arbuscular mycorrhizal fungi (AMFs), as well as the composition of the AMFs community in the soil. The aim of this study was to evaluate the occurrence and the structure of AMFs communities in cassava grown after different cover crops, and the effect of the cover crop on mineral nutrition and cassava yield under an organic farming system. The occurrence and structure of the AMFs community was evaluated through polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE). A randomized block experimental design was used with four replications. Six different cover crop management systems before cassava were evaluated: black oats, vetch, oilseed radish, intercropped oats + vetch, intercropped oats + vetch + oilseed radish, plus a control (fallow) treatment mowed every 15 days. Oats as a single crop or oats intercropped with vetch or with oilseed radish increased AMFs inoculum potential in soil with a low number of propagules, thus benefiting mycorrhizal colonization of cassava root. The treatments did not affect the structure of AMFs communities in the soil since the AMFs communities were similar in cassava roots in succession to different cover crops. AMFs colonization was high despite high P availability in the soil. The cassava crop yield was above the regional average, and P levels in the leaves were adequate, regardless of which cover crop treatments were used. One cover crop cycle prior to the cassava crop was not enough to observe a significant response in variables, P in plant tissue, crop yield, and occurrence and structure of AMFs communities in the soil. In the cassava roots in succession, the plant developmental stage affected the groupings of the structure of the AMF community.
Resumo:
OBJECTIVE: To assess the effect of a governmentally-led center based child care physical activity program (Youp'la Bouge) on child motor skills.Patients and methods: We conducted a single blinded cluster randomized controlled trial in 58 Swiss child care centers. Centers were randomly selected and 1:1 assigned to a control or intervention group. The intervention lasted from September 2009 to June 2010 and included training of the educators, adaptation of the child care built environment, parental involvement and daily physical activity. Motor skill was the primary outcome and body mass index (BMI), physical activity and quality of life secondary outcomes. The intervention implementation was also assessed. RESULTS: At baseline, 648 children present on the motor test day were included (age 3.3 +/- 0.6, BMI 16.3 +/- 1.3 kg/m2, 13.2% overweight, 49% girls) and 313 received the intervention. Relative to children in the control group (n = 201), children in the intervention group (n = 187) showed no significant increase in motor skills (delta of mean change (95% confidence interval: -0.2 (-0.8 to 0.3), p = 0.43) or in any of the secondary outcomes. Not all child care centers implemented all the intervention components. Within the intervention group, several predictors were positively associated with trial outcomes: 1) free-access to a movement space and parental information session for motor skills 2) highly motivated and trained educators for BMI 3) free-access to a movement space and purchase of mobile equipment for physical activity (all p < 0.05). CONCLUSION: This "real-life" physical activity program in child care centers confirms the complexity of implementing an intervention outside a study setting and identified potentially relevant predictors that could improve future programs.Trial registration: Trial registration number: clinical trials.gov NCT00967460 http://clinicaltrials.gov/ct2/show/NCT00967460.
Resumo:
Purpose: To date, the genotype/phenotype correlation of p.G56R-linked autosomal dominant retinitis pigmentosa (ADRP) is limited to less than 10 kindred. The purpose of this study is to report an unusual appearance of fundus autofluorescence (AF) with NR2E3 p.G56R-linked ADRP in a single kindred.Methods: Patients were enrolled among three generations in a previously unreported family. Molecular diagnosis was performed on all exons of NR2E3 and a p.G56R mutation was identified in affected family members only. Examinations included fundus photography, visual fields, optical coherence tomography, AF, near-infrared AF and ISCEV-standard electrophysiology (ERG).Results: Among 10 examined family members, 5 were affected. The youngest and oldest patients were 16 and 65 years old, respectively. Fundus examination revealed a range of retinal disorder from normal to optic nerve pallor, attenuated arterial caliber and bone spicule-like pigment deposits. In all patients, AF showed a double hyperfluorescent ring; an inner paramacular ring which extension was comparable among patients and an outer ring along the vascular arcades which extended towards periphery in older patients and became hypofluorescent. Maximal scotopic ERGs when recordable showed an increased a/b wave ratio.Conclusions: A double hyperfluorescent ring on AF is an uncommon observation and might be a specific clinical finding in NR2E3 p.G56R-linked ADRP. The consistency of that finding in all affected members of our 3-generation family confirms a previous study. Further analysis is required to determine whether AF changes are associated with particular retinal layer abnormalities.