939 resultados para TiO2(110)
Resumo:
The chemisorption of CH4 on Pt{110}-(1 x 2) has been studied by vibrational analysis of the reaction pathway defined by the potential energy surface and, in time reversal, by first-principles molecular dynamics simulations of CH4 associative desorption, with the electronic structure treated explicitly using density functional theory. We find that the symmetric stretch vibration ν1 is strongly coupled to the reaction coordinate; our results therefore provide a firm theoretical basis for recently reported state-resolved reactivity measurements, which show that excitation of the ν1 normal mode is the most efficient way to enhance the reaction probability
Resumo:
110 degrees C thermoluminescence (TL) peak in quartz is well known due to its pre-dose effect, which is used in dating technique. The generally accepted mechanism for the production of this peak is based on Ge impurity contained in quartz. Its role is to substitute for Si in SiO(4) tetrahedron and under irradiation gives rise to [GeO(4)/e(-)](-) electron centre. Heating for TL read out liberates electron that recombines with hole in [AlO(4)/h]degrees or [H(3)O(4)/h]degrees centres emitting photon. The investigation, carried out on blue quartz, green quartz, black quartz, pink quartz, red quartz, sulphurous quartz, milky quartz, alpha quartz and synthetic quartz, has shown that the 110 degrees C TL peak in all these varieties of quartz has no correlation with the respective Ge content. Electron paramagnetic resonance (EPR) measurements on any of these varieties of quartz revealed a signal with g(1) = 2.0004, g(2) = 1.9986 and g(3) = 1.974 and this signal does not appear to correspond to any known EPR signals in alpha quartz. Furthermore, isothermal decay measurements are carried out on the above mentioned EPR signal and 110 degrees C TL peak in alpha, blue and green quartz. A close correlation has been observed in the decay behavior. A new mechanism is proposed based on an interstitial O(-) centre. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Benzene adsorbed on highly acidic sulfated TiO2 (S-TiO2) shows an intriguing resonance Raman (RR) effect, with excitation in the blue-violet region. There are very interesting spectral features: the preferential enhancement of the e(2g) mode (1595 cm(-1)) in relation to the a(1g) mode (ring-breathing mode at 995 cm(-1)) and the appearance of bands at 1565 and 1514 cm(-1). The band at 1565 cm(-1) is probably one of the components of the e(2g) split band, originally a doubly degenerate mode (8a, 8b) in neat benzene, and the band at 1514 cm(-1) is assigned to the 19a mode, an inactive mode in neat benzene. These facts indicate a lowering of symmetry in adsorbed benzene, which may be caused by a strong interaction between S-TiO2 and the benzene molecule with formation of a benzene to Ti (IV) charge transfer (CT) complex or by the formation of a benzene radical cation species. However, the RR spectra of the adsorbed benzene cannot be assigned to the benzene radical cation because the observed wavenumber of the ring-breathing mode does not have the value expected for this species. Moreover, it was found by ESR measurements that the amount of radicals was very low, and so it was concluded that a CT complex is the species that originates the RR spectra. The most favorable intensification of the band at 1595 cm(-1) in the RR spectra of benzene/S-TiO2 at higher excitation energy corroborates this hypothesis, as an absorption band in this energy range, assigned to a CT transition, is observed. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
TiO2 thin films, employed in dye-sensitized solar cells, were prepared by the sol-gel method or directly by Degussa P25 oxide and their surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The effect of adsorption of the cis-[Ru(dcbH(2))(2)(NCS)(2)] dye, N3, on the surface of films was investigated. From XPS spectra taken before and after argon-ion sputtering procedure, the surface composition of inner and outer layers of sensitized films was obtained and a preferential etching of Ru peak in relation to the Ti and N ones was identified. The photoelectrochemical parameters were also evaluated and rationalized in terms of the morphological characteristics of the films. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work assesses the photocatalytic (TiO2/UV) degradation of a simulated acid dye bath (Yellow 3, Red 51, Blue 74, and auxiliary chemicals). Color and phytotoxicity removal were monitored by spectrophotometry and lettuce (Lactuca sativa) seeds as the test organism, respectively. Mineralization was determined by DOC analyses. Photocatalytic, photolytic, and adsorption experiments were performed, showing that adsorption was negligible. After 240 minutes of irradiation, it was achieved 96% and 78% of color removal with photocatalysis and photolysis, respectively. 37% of mineralization occurred with photocatalysis only. The dye bath was rendered completely non-toxic after 60 minutes of photocatalytic treatment; the same result was only achieved with photolysis after 90 minutes. A kinetic model composed of two first-order in series reactions was used. The first photocatalytic decolorization rate constant was k(1) = 0.062 min(-1) and the second k(2) = 0.0043 min(-1), approximately two times greater than the photolytic ones.
Resumo:
Platinum stepped surfaces vicinal to the (1 1 0) crystallographic pole have been investigated voltammetrically in 0.1 M HClO(4) and 0.1 M H(2)SO(4) solutions. Changes in the voltammetric profile with the step density suggest the existence of two types of surface sites, that has been ascribed to linear and bidimensional domains. This result indicates the existence of important restructuring processes that separate the real surface distribution from the nominal one. The electronic properties of the surfaces have been characterized with the CO charge displacement method and the potential of zero total charge has been calculated as a function of the step density. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
O objetivo desta tese é investigar cuidadosamente a interação entre a intuição e a razão, propondo um novo modelo cognitivo que explicaria a existência, interação e comportamento dos chamados "dois sistemas" que, supõe-se, coabitem a mente humana. O modelo que será postulado nesta dissertação integra e explica estes dois sistemas; e o sistema NUMBO derivado dos projetos de Hofstadter (1995) é capaz de demonstrar sua plausibilidade psicológica e sua tàctibilidade de modelagem e simulação em uma arquitetura computacional. Serão utilizadas variações do problema da bola e do taco, pertencente ao Cognitive Reflection Test proposto por Frederick (2005), para ilustrar como o processo pelo qual as pessoas passam pode se dar, bem como serão utilizados resultados da psicologia experimental, para validar a plausibilidade psicológica dos mecanismos propostos. A contribuição deste trabalho é, portanto, explicitar as "coleções de processos" que estão operando em cada "caixa-preta" do sistema 1 ou sistema 2. Desta fom1a, pretende-se dar um pequeno passo em direção à teorias mais elaboradas sobre intuição e razão.
Resumo:
In this study it was used two metallic oxides, Ta2O5 and TiO2, in order to obtain metallic powders of Ta and Ti through aluminothermic reduction ignited by plasma. Ta2O5 and TiO2 powders were mixed with Al in a planetary mill, using different milling times. A thermal analysis study (DTA and TG) was carried out, in order to know the temperature to react both the mixtures. Then, these mixtures were submitted to a hollow cathode discharge, where they were reacted using aluminothermic reduction ignited by plasma. The product obtained was characterized by XRD and SEM, where it was proven the possibility of producing these metallic particles, different from the conventional process, where metallic ingots are obtained. It was verified that the aluminothermic reduction ignited by plasma is able to produce metallic powders of Ta and Ti, and a higher efficiency was observed to the process with Ta2O5-Al mixtures. Among different microstructural aspects observed, it can be noted the presence of metallic nanoparticles trapped into an Al2O3 matrix, besides acicular structures (titanium) and dendritic structures (tantalum), which are a product characteristic from a fast cooling
Resumo:
In recent decades have seen a sharp growth in the study area of nanoscience and nanotechnology and is included in this area, the study of nanocomposites with self-cleaning properties. Since titanium dioxide (TiO2) has high photocatalytic activity and also antimicrobial, self-cleaning surfaces in your application has been explored. In this study a comparison was made between two synthesis routes to obtain TiO2 nanoparticles by hydrothermal method assisted by microwave. And after analysis of XRD and SEM was considered the best material for use in nanocomposites. It was deposited nanocomposite film of poly (dimethyl siloxane) (PDMS) with 0.5, 1, 1.5 and 2% by weight of nanoparticles of titanium dioxide (TiO2) by the spraying method. The nanocomposite was diluted with hexane and the suspension was deposited onto glass substrate, followed by curing in an oven with forced air circulation. The photocatalytic activity of the nanocomposite impregnated with methylene blue was evaluated by UV- vis spectroscopy from the intensity variation of absorption main peak at 660nm with time of exposure to the UV chamber. Changes in the contact angle and microhardness were analyzed before and after UV aging test. The effect of ultraviolet radiation on the chemical structure of the PDMS matrix was evaluated by spectrophotometry Fourier transform infrared (FTIR).The results indicated that the addition of TiO2 nanoparticles in the coating PDMS gave high photocatalytic activity in the decomposition of methylene blue, an important characteristic for the development of self-cleaning coatings
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this study we used the plasma as a source of energy in the process of carbothermic reduction of rutile ore (TiO2). The rutile and graphite powders were milled for 15 h and placed in a hollow cathode discharge produced by in order to obtain titanium carbonitride directly from the reaction, was verified the influence of processing parameters of plasma temperature and time in the synthesis of TiCN. The reaction was carried out at 600, 700 and 800˚C for 3 to 4 hours in an atmosphere of nitrogen and argon. During all reactions was monitored by plasma technique of optical emission spectroscopy (EEO) to check the active species present in the process of carbothermal reduction of TiO2. The powder obtained after the reactions were characterized by the techniques of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The technique of EEO were detected in all reactions the spectra CO and NO, and these gas-phase resulting from the reduction of TiO2. The results of X-ray diffraction confirmed the reduction, where for all conditions studied there was evidence of early reduction of TiO2 through the emergence of intermediate oxides. In the samples reduced at 600 and 700˚C, there was only the phase Ti6O11, those reduced to 800˚C appeared Ti5O9 phases, and Ti6O11 Ti7O13, confirming that the carbothermal reduction in plasma, a reduction of the ore rutile (TiO2) in a series of intermediate titanium oxide (TinO2n-1) where n varies between 5 and 10
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
The study and fabrication of nanostructured systems composed of magnetic materials has been an area of great scientific and technological interest. Soft magnetic materials, in particular, have had great importance in the development of magnetic devices. Among such materials we highlight the use of alloys of Ni and Fe, known as Permalloy. We present measurement results of structural characterization and magnetic films in Permalloy (Ni81Fe19), known to be a material with high magnetic permeability, low coercivity and small magneto- crystalline anisotropy, deposited on MgO (100) substrates. The Magnetron Sputtering technique was used to obtain the samples with thicknesses varying between 9 150 nm. The techniques of X- ray Diffraction at high and low angle were employed to confirm the crystallographic orientation and thickness of the films. In order to investigate the magnetic properties of the films the techniques of Vibrant Sample Magnetometry (VSM), Ferromagnetic Resonance (FMR) and Magnetoimpedance were used. The magnetization curves revealed the presence of anisotropy for the films of Py/MgO (100), where it was found that there are three distinct axis - an easy-axis for θH = 0°, a hard-axis for θH = 45° and an intermediate for θH = 90°. The results of the FMR and Magnetoimpedance techniques confirm that there are three distinct axes, that is, there is a type C2 symmetry. Then we propose, for these results, the interpretation of the magnetic anisotropy of Py/MgO ( 100 ) is of type simple C2, ie a cubic magnetic anisotropy type ( 110 )
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)