937 resultados para Thin gold film
Resumo:
The electrochromic behavior of iron complexes derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) and a hexacyanoferrate species in polyelectrolytic multilayer adsorbed films is described for the first time. This complex macromolecule was deposited onto indium-tin oxide (ITO) substrates via self-assembly, and the morphology of the modified electrodes was studied using atomic force microscopy (AFM), which indicated that the hybrid film containing the polyelectrolyte multilayer and the iron complex was highly homogeneous and was approximately 50 nm thick. The modified electrodes exhibited excellent electrochromic behavior with both intense and persistent coloration as well as a chromatic contrast of approximately 70%. In addition, this system achieved high electrochromic efficiency (over 70 cm(2) C-1 at 630 nm) and a response time that could be measured in milliseconds. The electrode was cycled more than 10(3) times, indicating excellent stability.
Resumo:
Magnetic nanoparticles are promising for a variety of applications, such as biomedical devices, spin electronics, magnetic data storage media, to name a few. However, these goals may only be reached if stable and organized structures are fabricated. In this article, we report on a single-step synthetic route with the coprecipitation method, in which iron oxide magnetic nanoparticles (Fe3O4 NPs) were stabilized in aqueous media using the poly(diallyldimethylammonium chloride) (PDAC) polyelectrolyte. The Fe3O4 NPs had a diameter of ca. 5 nm, according to transmission electron microscopy (TEM) images, being arranged in an inverse spinel structure typical of magnetite. An investigation with infrared spectroscopy indicated that the mechanisms of stabilization in the polymer matrix were based on the interaction between quaternary amide groups from PDAC and the nanoparticle surface. The Fe3O4-PDAC NPs exhibited considerable magnetic susceptibility, with a monotonic increase in the magnetization with decreasing temperature. These Fe3O4-PDAC NPs were immobilized in layer-by-layer (LbL) films, being alternated with layers of poly(vinylsulfonic acid) (PVS). The LbL films were much rougher than typical films made with polyelectrolytes, and Fe3O4-PDAC NPs have been responsible for the high electrocatalytic activity toward H2O2 reduction, with an overpotential shift of 0.69 V. Overall, the stability, magnetic properties and film-forming ability indicate that the Fe3O4-PDAC NPs may be used for nanoelectronics and bioelectrochemical devices requiring reversible and magnetic redox materials.
Resumo:
The immobilization of the glucose/mannose-binding lectin from Concanavalia ensiformis seeds (ConA) onto a monolayer made of a galactomannan extracted from Leucaena leucocephala seeds (GML), which was adsorbed onto - amino-terminated surfaces, was investigated by means of ellipsometry and atomic force microscopy. The mean thickness of GML monolayer, which polysaccharide consists of linear 1 -> 4-linked beta-D-mannopyranosil units partially substituted at C-6 by alpha-D-galactopyranosyl units, amounted to (1.5 +/- 0.2) nm. ConA molecules adsorbed onto GML surfaces forming (2.0 +/- 0.5) nm thick layers. However, in the presence of mannose the adsorption failed, indicating that ConA binding sites were blocked by mannose and were no longer available for mannose units present in the GML backbone. The GML film was also used as support for the adsorption of three serotypes of dengue virus particles (DENV-1, DENV-2 and DENV-3), where DENV-2 formed the thickest film (4 +/- 2) nm. The adsorbed layer of DENV-2 onto ConA-covered GML surfaces presented mean thickness values similar to that determined for DENV-2 onto bare GML surfaces. The addition of free mannose units prevented DENV-2 adsorption onto ConA-covered GML films by similar to 50%, suggesting competition between virus and mannose for ConA binding sites. This finding suggests that if ConA is also adsorbed to GML surface and its binding site is blocked by free mannose, virus particles are able to recognized GML mannose unities substituted by galactose. interactions between polysaccharides thin films, proteins, and viruses are of great relevance since they can provide basis for the development of biotechnological devices. These results indicate that GML is a potential polysaccharide for biomaterials development, as those could involve interactions between ConA in immune system and viruses. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The in situ complexation between 2,3,5,6-tetra(2-pyridyl)pyrazine (tppz) molecules and europium ions at the air-liquid interface by means of mixed 1-octadecanol Langmuir films is reported. These films were transferred to solid supports by means of the Langmuir-Blodgett (LB) technique. The EDS maps attested the homogeneity of the LB films as well as the presence of the europium ions. The mixed alcohol/tppz LB film contained a larger amount of europium ions as compared to the pure octadecanol LB film. This work reports the production of a thin luminescent Eu3+ film containing europium ions using only alcohol molecules as ligands an unexpected result, since it is well known that there is an occurrence of non-radiative deactivation of excited europium by hydroxyl groups. Europium ion multiple binding sites were detected from lifetime decay measurements of these films in the presence of tppz molecules. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Reactive Sputter Magnetron (RSM) is a widely used technique to thin films growing of compounds both, in research laboratories and in industrial processes. The nature of the deposited compound will depend then on the nature of the magnetron target and the nature of the ions generated in the plasma. One important aspect of the problem is the knowledge of the evolution of the film during the process of growing itself. In this work, we present the design, construction of a chamber to be installed in the Huber goniometer in the XRD2 line of LNLS in Campinas, which allows in situ growing kinetic studies of thin films.
Resumo:
A wall film model has been implemented in a customized version of KIVA code developed at University of Bologna. Under the hypothesis of `thin laminar ow' the model simulates the dynamics of a liquid wall film generated by impinging sprays. Particular care has been taken in numerical implementation of the model. The major phenomena taken into account in the present model are: wall film formation by impinging spray; body forces, such as gravity or acceleration of the wall; shear stress at the interface with the gas and no slip condition on the wall; momentum contribution and dynamic pressure generated by the tangential and normal component of the impinging drops; film evaporation by heat exchange with wall and surrounding gas. The model doesn't consider the effect of the wavy film motion and suppose that all the impinging droplets adhere to the film. The governing equations have been integrated in space by using a finite volume approach with a first order upwind differencing scheme and they have been integrated in time with a fully explicit method. The model is validated using two different test cases reproducing PFI gasoline and DI Diesel engine wall film conditions.
Resumo:
Deutsch:In der vorliegenden Arbeit konnten neue Methoden zur Synthese anorganischer Materialien mit neuartiger Architektur im Mikrometer und Nanometer Maßstab beschrieben werden. Die zentrale Rolle der Formgebung basiert dabei auf der templatinduzierten Abscheidung der anorganischen Materialien auf selbstorganisierten Monoschichten. Als Substrate eignen sich goldbedampfte Glasträger und Goldkolloide, die eine Mittelstellung in der Welt der Atome bzw. Moleküle und der makroskopischen Welt der ausgedehnten Festkörper einnehmen. Auf diesen Substraten lassen sich Thiole zu einer monomolekularen Schicht adsorbieren und damit die Oberflächeneigenschaften des Substrates ändern. Ein besonderer Schwerpunkt bei dieser Arbeit stellt die Synthese speziell auf die Bedürfnisse der jeweiligen Anwendung ausgerichteten Thiole dar.Im ersten Teil der Arbeit wurden goldbedampfte Glasoberflächen als Template verwendet. Die Abscheidung von Calciumcarbonat wurde in Abhängigkeit der Schichtdicke der adsorbierten Monolage untersucht. Aragonit, eine der drei Hauptphasen des Calciumcarbonat Systems, wurde auf polyaromatischen Amid - Oberflächen mit Schichtdicken von 5 - 400 nm Dicke unter milden Bedingung abgeschieden. Die einstellbaren Parameter waren dabei die Kettenlänge des Polymers, der w-Substituent, die Bindung an die Goldoberfläche über Verwendung verschiedener Aminothiole und die Kristallisationstemperatur. Die Schichtdickeneinstellung der Polymerfilme erfolgte hierbei über einen automatisierten Synthesezyklus.Titanoxid Filme konnten auf Oberflächen strukturiert werden. Dabei kam ein speziell synthetisiertes Thiol zum Einsatz, das die Funktionalität einer Styroleinheit an der Oberflächen Grenze als auch eine Möglichkeit zur späteren Entfernung von der Oberfläche in sich vereinte. Die PDMS Stempeltechnik erzeugte dabei Mikrostrukturen auf der Goldoberfläche im Bereich von 5 bis 10 µm, die ihrerseits über die Polymerisation und Abscheidung des Polymers in den Titanoxid Film überführt werden konnten. Drei dimensionale Strukturen wurden über Goldkolloid Template erhalten. Tetraethylenglykol konnte mit einer Thiolgruppe im Austausch zu einer Hydroxylgruppe monofunktionalisiert werden. Das erhaltene Molekül wurde auf kolloidalem Gold selbstorganisiert; es entstand dabei ein wasserlösliches Goldkolloid. Die Darstellung erfolgte dabei in einer Einphasenreaktion. Die so erhaltenen Goldkolloide wurden als Krstallisationstemplate für die drei dimensionale Abscheidung von Calciumcarbonat verwendet. Es zeigte sich, dass Glykol die Kristallisation bzw. den Habitus des krsitalls bei niedrigem pH Wert modifiziert. Bei erhöhtem pH Wert (pH = 12) jedoch agieren die Glykol belegten Goldkolloide als Template und führen zu sphärisch Aggregaten. Werden Goldkolloide langkettigen Dithiolen ausgesetzt, so führt dies zu einer Aggregation und Ausfällung der Kolloide aufgrund der Vernetzung mehrer Goldkolloide mit den Thiolgruppen der Alkyldithiole. Zur Vermeidung konnte in dieser Arbeit ein halbseitig geschütztes Dithiol synthetisiert werden, mit dessen Hilfe die Aggregation unterbunden werden konnte. Das nachfolgende Entschützten der Thiolfunktion führte zu Goldkolloiden, deren Oberfläche Thiol funktionalisiert werden konnte. Die thiolaktiven Goldkolloide fungierten als template für die Abscheidung von Bleisulfid aus organisch/wässriger Lösung. Die Funktionsweise der Schutzgruppe und die Entschützung konnte mittels Plasmonenresonanz Spektroskopie verdeutlicht werden. Titanoxid / Gold / Polystyrol Komposite in Röhrenform konnten synthetisiert werden. Dazu wurde ein menschliches Haar als biologisches Templat für die Formgebung gewählt.. Durch Bedampfung des Haares mit Gold, Assemblierung eines Stryrolmonomers, welches zusätzlich eine Thiolfunktionalität trug, Polymerisation auf der Oberfläche, Abscheidung des Titanoxid Films und anschließendem Auflösen des biologischen Templates konnte eine Röhrenstruktur im Mikrometer Bereich dargestellt werden. Goldkolloide fungierten in dieser Arbeit nicht nur als Kristallisationstemplate und Formgeber, auch sie selbst wurden dahingehend modifiziert, dass sie drahtförmige Agglormerate im Nanometerbereich ausbilden. Dazu wurden Template aus Siliziumdioxid benutzt. Zum einen konnten Nanoröhren aus amorphen SiO2 in einer Sol Gel Methode dargestellt werden, zum anderen bediente sich diese Arbeit biologischer Siliziumoxid Hohlnadeln aus marinen Schwämmen isoliert. Goldkolloide wurden in die Hohlstrukturen eingebettet und die Struktur durch Ausbildung von Kolloid - Thiol Netzwerken mittels Dithiol Zugabe gefestigt. Die Gold-Nanodrähte im Bereich von 100 bis 500 nm wurden durch Auflösen des SiO2 - Templates freigelegt.
Resumo:
Metallische Objekte in der Größenordnung der optischen Wellenlänge zeigen Resonanzen im optischen Spektralbereich. Mit einer Kombination aus Kolloidlithographie, Metallfilmbedampfung und reaktivem Ionenstrahl¨atzen wurden Nanosicheln aus Gold bzw. Silber mit identischer Form und Orientierung in Sichelform mit einer Größe von 60nm bis 400nm hergestellt. Der Öffnungswinkel der Nanosicheln lässt sich kontinuierlich einstellen. Durch die einheitliche Orientierung lassen sich Messungen am Ensemble direkt auf das Verhalten des Einzelobjektes übertragen, wie ein Vergleich der Extinktionsspektren einer Ensemblemessung am UV/Vis/NIR-Spektrometer mit einer Einzelpartikelmessung in einem konfokalen Mikroskop zeigt. Die optische Antwort der Nanosicheln wurde als zwei-dimensionales Modell mit einer Finite Elemente Methode berechnet. Das Ergebnis sind mehrere polarisationsabhängige Resonanzen im optischen Spektrum. Diese lassen sich durch Variation des Öffnungswinkels und der Gr¨oße der Nanosichel verschieben. Durch Beleuchten lassen sich plasmonische Schwingungen anregen, die ein stark lokalisiertes Nahfeld an den Spitzen und in der Öffnung der Nanosicheln erzeugen. Das Nahfeld der Partikelresonanz wurde mit einer Fotolackmethode nachgewiesen. Die Untersuchungen am UV/Vis/NIR-Spektrometer zeigen mehrere polarisationsabhängige Resonanzen im Spektralbereich von 300 nm bis 3200 nm. Die Resonanzen der Nanosicheln lassen sich durch den Öffnungswinkel und den Durchmesser in der Größenordnung der Halbwertbreite im optischen Spektrum verschieben. In der Anwendung als Chemo- bzw. Biosensor zeigen Gold-Nanosicheln eine ähnliche Empfindlichkeit wie vergleichbare Sensoren auf der Basis von dünnen Metallstrukturen. Das Nahfeld zeichnet sich durch eine starke Lokalisierung aus und dringt, je nach Multipolordnung, zwischen 14 nm und 70 nm in die Umgebung ein. Quantenpunkte wurden an das Nahfeld der Nanosicheln gekoppelt. Die Emission der Quantenpunkte bei einer Wellenlänge von 860nm wird durch die Resonanz der Nanosicheln verstärkt. Die Nanosicheln wurden als optische Pinzette eingesetzt. Bei einer Anregung mit einem Laser bei einer Wellenlänge von 1064 nm wurden Polystyrolkolloide mit einem Durchmesser von 40 nm von den resonanten Nanosicheln eingefangen. Die Nanosicheln zeigen außergewöhnliche optische Eigenschaften, die mithilfe der Geometrieparameter über einen großen Bereich verändert werden können. Die ersten Anwendungen haben Anknüpfungspunkte zur Verwendung in der Sensorik, Fluoreszenzspektroskopie und als optische Pinzette aufgezeigt.
Resumo:
Grundlage für die hier gezeigte Arbeit stellt die Eigenschaft von amphiphilen Blockcopolymeren dar immer den Block mit der niedrigsten Grenzflächenenergie zum angrenzenden Medium an die Oberfläche zu bringen. Durch einen Austausch des Mediums an der Grenzfläche zum Blockcopolymer kann eine Reorientierung erzwungen werden, wenn die Grenzflächenenergie des anderen Blocks nun die niedrigere Grenzflächenenergie besitzt. Dieses Verhalten von dünnen amphiphilen Blockcopolymerfilmen wurde zur Strukturierung von Oberflächen ausgenutzt und in nachfolgenden Synthesen weiter verstärkt. Um dies zu erreichen wurde das zur Strukturierung erforderliche Poly(4-Octylstyrol)block(4-hydroxystyrol) durch kontrollierte radikalische Polymerisationsmethode mit dem Tempo Unimer (2,2,6,6-Tetramethyl-1-1(1-phenyl-ethoxy)-piperidin) synthetisiert. Für die geplanten Reorientierungen und Modifizierungen von Oberflächen wurden dünne Filme durch Schleuderbeschichtung auf verschiedenen Substraten (Siliziumwafern, Glassubstraten und Goldoberflächen) hergestellt. Das Verhalten der Oberflächen von diesen Filmen wurde durch Kontaktwinkelmessungen untersucht. Auf diese Weise konnte gezeigt werden, dass die Oberfläche von Polymerfilmen nach der Präparation aus dem hydrophoben Block des Polymers gebildet wird. Durch Kontakt des Polymerfilms mit Wasser kann dieser zur Reorientierung gebracht werden, so dass der hydrophile Block des Polymers an der Oberfläche erscheint. Dieses Verhalten wurde zur Strukturierung mit softlithographischen Techniken genutzt. Dazu wurden hydrophil/hydrophob strukturierte Oberflächen durch Aufsetzen von hydrophoben PDMS-Stempeln, die Teile der Oberfläche selektiv abdeckten, und Einbringen von Wasser in die dabei entstehenden Kapillaren hergestellt. Dies ermöglichte es die Oberfläche selektiv im Größenbereich von 500nm bis zu 50µm zu strukturieren und an den reaktiven Bereichen Materialien, wie z.B. Kupfer, Titandioxid, Polyelektrolyte, photonische Kristalle und angegraftete Polymere, mit verschiedenen Methoden selektiv auf die Oberfläche aufzubringen. Um den Reorganisationsprozess der Oberfläche genauer zu studieren, wurde ein für diese Aufgabe besser geeignetes Polymer (Poly(Styrol)-block-poly(essigsäure-2-(2-(4-vinyl-phenoxy)-ethoxy)ethylester)) synthetisiert. Aus diesem Blockcopolymer wurden wieder dünne Filme durch Spincoaten hergestellt. Die Reorientierung dieses Polymers in 70°C warmen Wasser konnte durch Kontaktwinkelmessungen und NEXAFS Spektroskopie nachgewiesen werden. Mit Hilfe der NEXAFS Spektroskopie konnte festgestellt werden, dass die Geschwindigkeit der Reorientierung durch eine exponentielle Funktion beschrieben werden kann. Eine Auswertung der Geschwindigkeitskonstante für die Reorientierung einer hydrophilen zu einer hydrophoben Oberfläche des Polymers bei 60°C führt zu =75min. Aufgrund des exponentiellen Charakters der Reorientierung macht es den Anschein, dass die Reorientierung bei verschiedenen Reorientierungstemperaturen bis zu einem gewissen Grad erfolgt und dann stoppt. Eine weitere Reorientierung scheint erst wieder bei einer Temperaturerhöhung zu beginnen. Aus AFM Messungen ist ein Beginnen der Reorientierung durch Bildung kleiner Löcher in der Polymeroberfläche zu erkennen, die sich zu runden Erhöhungen und Vertiefungen vergrößern, um letztendlich in ein spinodales Entmischungsmuster über zu gehen. Dieses heilt dann im Laufe der Zeit langsam durch Verschwinden der hydrophilen Bereiche langsam aus. Der Beginn des zuvor beschriebenen Reorientierungsprozesses einer hydrophilen Oberfläche in eine hydrophobe konnte sowohl in den AFM, als auch in den NEXAFS-Messungen zu ca. 50°C bestimmt werden.
Resumo:
Plastic solar cells bear the potential for large-scale power generation based on flexible, lightweight, inexpensive materials. Since the discovery of the photo-induced electron transfer from a conjugated polymer (electron-donor) to fullerene or its derivatives molecules (electron-acceptors), followed by the introduction of the bulk heterojunction concept which means donors and acceptors blended together to realize the fotoactive layer, materials and deposition techniques have been extensively studied. In this work, electrochemical-deposition methods of polymeric conductive films were studied in order to realize bulk heterojunction solar cells. Indium Tin Oxide (ITO) glass electrodes modified with a thin layer of poly(3,4-ethylenedioxythiophene) (PEDOT) were electrochemically prepared under potentiodynamic and potentiostatic conditions; then those techniques were applied for the electrochemical co-deposition of donor and acceptor on modified ITO electrode to produce the active layer (blend). For the deposition of the electron-donor polymer the electropolymerization of many functionalized thiophene monomers was investigated while, as regards acceptors, fullerene was used first, then the study was focused on its derivative PCBM ([6,6]-phenyl-C61-butyric acid methyl ester). The polymeric films obtained (PEDOT and blend) were electrochemically and spectrophotometrically characterized and the film thicknesses were evaluated by atomic force microscopy (AFM). Finally, to check the performances and the efficiency of the realized solar cells, tests were carried out under standard conditions. Nowadays bulk heterojunction solar cells are still poorly efficient to be competitively commercialized. A challenge will be to find new materials and better deposition techniques in order to obtain better performances. The research has led to several breakthroughs in efficiency, with a power conversion efficiency approaching 5 %. The efficiency of the solar cells produced in this work is even lower (lower than 1 %). Despite all, solar cells of this type are interesting and may represent a cheaper and easier alternative to traditional silicon-based solar panels.
Resumo:
Hydrogen peroxide (H2O2) is a powerful oxidant which is commonly used in a wide range of applications in the industrial field. Several methods for the quantification of H2O2 have been developed. Among them, electrochemical methods exploit the ability of some hexacyanoferrates (such as Prussian Blue) to detect H2O2 at potentials close to 0.0 V (vs. SCE) avoiding the occurrence of secondary reactions, which are likely to run at large overpotentials. This electrocatalytic behaviour makes hexacyanoferrates excellent redox mediators. When deposited in the form of thin films on the electrode surfaces, they can be employed in the fabrication of sensors and biosensors, normally operated in solutions at pH values close to physiological ones. As hexacyanoferrates show limited stability in not strongly acidic solutions, it is necessary to improve the configuration of the modified electrodes to increase the stability of the films. In this thesis work, organic conducting polymers were used to fabricate composite films with Prussian Blue (PB) to be electro-deposited on Pt surfaces, in order to increase their pH stability. Different electrode configurations and different methods of synthesis of both components were tested, and for each one the achievement of a possible increase in the operational stability of Prussian Blue was verified. Good results were obtained for the polymer 3,3''-didodecyl-2,2':5',2''-terthiophene (poly(3,3''-DDTT)), whose presence created a favourable microenvironment for the electrodeposition of Prussian Blue. The electrochemical behaviour of the modified electrodes was studied in both aqueous and organic solutions. Poly(3,3''-DDTT) showed no response in aqueous solution in the potential range where PB is electroactive, thus in buffered aqueous solution is was possible to characterize the composite material, focusing only on the redox behaviour of PB. A combined effect of anion and cation of the supporting electrolyte was noticed. The response of Pt electrodes modified with films of the PB /poly(3,3''-DDTT) composite was evaluated for the determination of H2O2. The performance of such films was found better than that of the PB alone. It can be concluded that poly(3,3''-DDTT) plays a key role in the stabilization of Prussian Blue causing also a wider linearity range for the electrocatalytic response to H2O2.
Resumo:
Research on thin nanostructured crystalline TiO2 films has attracted considerable interests because of their intriguing physical properties and potential applications in photovoltaics. Nanostructured TiO2 film plays an important role in the TiO2 based dye-sensitized solar cells because they act as a substrate for the adsorption of dye molecules and a matrix for the transportation of electrons as well. Thus they can influence the solar cell performance significantly. Consequently, the control of the morphology including the shape, size and size distribution of the TiO2 nanostructures is critical to tune and optimize the performance of the solar cells. To control the TiO2 morphology, a strategy using amphiphilic block copolymer as templating agent coupled with sol-gel chemistry has been applied. Especially, a good-poor solvent pair induced phase separation process has been developed to guide the microphase separation behavior of the block copolymers. The amphiphilic block copolymers used include polystyrene-block-poly (ethylene oxide) (PS-b-PEO), poly (methyl methacrylate)-block-poly (ethylene oxide) (PMMA-b-PEO), and poly (ethylene oxide)-block-polystyrene-block-poly (ethylene oxide) (PEO-b-PS-b-PEO). The block copolymer undergoes a good-poor-solvent pair induced phase separation in a mixed solution of 1, 4-dioxane or N, N’-dimethyl formamide (DMF), concentrated hydrochloric acid (HCl) and Titanium tetraisopropoxide (TTIP). Specifically, in the system of PS-b-PEO, a morphology phase diagram of the inorganic-copolymer composite films was mapped by adjusting the weight fractions among 1, 4-dioxane, HCl, and TTIP in solution. The amorphous TiO2 within the titania-block copolymer composite films was crystallized by calcination at temperatures above 400C, where the organic block copolymer was simultaneously burned away. This strategy is further extended to other amphiphilic block copolymers of PMMA-b-PEO and PEO-b-PS-b-PEO, where the morphology of TiO2 films can also be controlled. The local and long range structures of the titania films were investigated by the combination of imaging techniques (AFM, SEM) and x-ray scattering techniques (x-ray reflectivity and grazing incidence small-angle x-ray scattering). Based on the knowledge of the morphology control, the crystalline TiO2 nanostructured films with different morphologies were introduced into solid state dye-sensitized solar cells. It has been found that all of the morphologies help to improve the performance of the solar cells. Especially, clustered nanoparticles, worm-like structures, foam-like structures, large collapsed nanovesicles show more pronounced performance improvement than other morphologies such as nanowires, flakes, and nanogranulars.
Resumo:
A nanostructured thin film is a thin material layer, usually supported by a (solid) substrate, which possesses subdomains with characteristic nanoscale dimensions (10 ~ 100 nm) that are differentiated by their material properties. Such films have captured vast research interest because the dimensions and the morphology of the nanostructure introduce new possibilities to manipulating chemical and physical properties not found in bulk materials. Block copolymer (BCP) self-assembly, and anodization to form nanoporous anodic aluminium oxide (AAO), are two different methods for generating nanostructures by self-organization. Using poly(styrene-block-methyl methacrylate) (PS-b-PMMA) nanopatterned thin films, it is demonstrated that these polymer nanopatterns can be used to study the influence of nanoscale features on protein-surface interactions. Moreover, a method for the directed assembly of adsorbed protein nanoarrays, based on the nanoscale juxtaposition of the BCP surface domains, is also demonstrated. Studies on protein-nanopattern interactions may inform the design of biomaterials, biosensors, and relevant cell-surface experiments that make use of nanoscale structures. In addition, PS-b-PMMA and AAO thin films are also demonstrated for use as optical waveguides at visible wavelengths. Due to the sub-wavelength nature of the nanostructures, scattering losses are minimized, and the optical response is amenable to analysis with effective medium theory (EMT). Optical waveguide measurements and EMT analysis of the films’ optical anisotropy enabled the in situ characterization of the PS-b-PMMA nanostructure, and a variety of surface processes within the nanoporous AAO involving (bio)macromolecules at high sensitivity.
Resumo:
L’attività di dottorato qui descritta ha riguardato inizialmente lo sviluppo di biosensori elettrochimici semplificati per la rilevazione di DNA e successivamente lo studio di dispositivi organici ad effetto di campo per la stimolazione e il rilevamento dell’attività bioelettrica di cellule neuronali. Il lavoro di ricerca riguardante il prima parte è stato focalizzato sulla fabbricazione e sulla caratterizzazione di un biosensore a due elettrodi per la rilevazione di DNA solubile , facilmente producibile a livello industriale. Tale sensore infatti, è in grado di leggere livelli diversi di correnti faradiche sulle superfici in oro degli elettrodi, a discrezione di un eventuale ibridizzazione del DNA da analizzare su di esse. I risultati ottenuti riguardo a questo biosensore sono :la paragonabilità dello stesso con i sensori standard a tre elettrodi basati sulla medesima metodica, la possibilità di effettuare due misure in parallelo di uno stesso campione o di 2 diversi campioni su di uno stesso di dispositivo e la buona applicabilità della chimica superficiale a base di tale biosensore a superfici create con tecnologie industriali. Successivamente a tali studi, mi sono focalizzato sull’utilizzo di dispositivi organici ad effetto campo (in particolare OTFT) per lo sviluppo di un biosensore capace di stimolare e registrare l’attività bioelettrica di cellule neuronali. Inizialmente sono state identificate le caratteristiche del materiale organico utilizzato e successivamente del dispositivo fabbricato pre e post esposizione all’ambiente fisiologico. Poi, sono stati effettuati esperimenti per osservare la capacità di stimolare e di leggere i segnali elettrogenici da parte dell’OTFT. I risultati ottenuti da tali studi sono che: il materiale organico ed il dispositivo mantengo le loro caratteristiche morfologiche e funzionali dopo l’esposizione per giorni all’ambiente fisiologico. Inoltre l’OFET in grado di stimolare il cambiamento delle tensioni di membrana cellulari e contemporaneamente di registrare tali variazioni e le eventuali risposte cellulari provocate da esse.
Resumo:
Organic field-effect transistors (OFETs) are becoming interesting owing to their prospective application as cheap, bendable and light weight electronic devices rnlike flexible displays. However, the bottleneck of OFETs is their typically low charge carrier mobilities. An effective and crucial route towards circumventing thisrnhurdle is the control of organic semiconductor thin film morphology which critically determine charge carrier transport. In this work, the influence of film morphologyrnis highlighted together with its impact on OFET transistor performance.