711 resultados para Thermotolerant yeasts


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diversity of endolithic Dry Valley rock microorganisms was studied by evaluating the presence of morphotypes in enrichments. Storage of rock samples for 16 h over dry ice affected the diversity of endolithic organisms, especially that of algae and fungi. Diversity in various samples depended on rock location and exposure, on the rock type, and to some extent on the pH of the pulverized rock samples. In most cases sandstone contained more morphotypes than dolerite or granite. Presence of many different phototrophs resulted in greater diversity of the heterotrophs in the enrichments. Samples from Linnaeus Terrace and Battleship Promontory had higher morphotype (MT) numbers than those from more exposed sites such as New Mountain, University Valley, Dais, or Mt. Fleming. Beacon sandstone (13 samples) from Linnaeus Terrace varied greatly with respect to MT numbers, although the pH values ranged only from 4.2-5.3. The highest MT number of 24 per sample was obtained from the upper surface of a flat boulder tilted to the North. Only two MT's were found in a hard sandstone sample from the wind-exposed and more shaded east side of the Terrace. 15 sandstone samples from Battleship Promontory contained more diverse populations: there occurred a total of 131 different MT's in these samples as compared to only 68 in Linnaeus Terrace samples. Cysts of colorless flagellates were found in some Battleship Promontory samples; rnost samples were populated with a wealth of different cyanobacteria. Studies on the distribution of actinomycete morphotypes in Linnaeus Terrace sandstone revealed great differences between individual boulders. Identification tests and lipid analyses made with representative strains of the isolated 1500 pure cultures led to genus names such as Caulobacter, Blastobacter, Hyphomicrobium, Micrococcus, Arthrobacter, Brevibacterium, Corynebacterium, Bifidobacterium, Mycobacterium, Nocardia (Amycolata), Micromonospora, Streptomyces, Blastococcus, and Deinococcus. Our data demonstrate the great diversity of Antarctic endolithic microbial populations.