910 resultados para Thermally Induced Phase Separation
Resumo:
T-cells specific for foreign (e.g., viral) antigens can give rise to strong protective immune responses, whereas self/tumor antigen-specific T-cells are thought to be less powerful. However, synthetic T-cell vaccines composed of Melan-A/MART-1 peptide, CpG and IFA can induce high frequencies of tumor-specific CD8 T-cells in PBMC of melanoma patients. Here we analyzed the functionality of these T-cells directly ex vivo, by multiparameter flow cytometry. The production of multiple cytokines (IFNγ, TNFα, IL-2) and upregulation of LAMP-1 (CD107a) by tumor (Melan-A/MART-1) specific T-cells was comparable to virus (EBV-BMLF1) specific CD8 T-cells. Furthermore, phosphorylation of STAT1, STAT5 and ERK1/2, and expression of CD3 zeta chain were similar in tumor- and virus-specific T-cells, demonstrating functional signaling pathways. Interestingly, high frequencies of functionally competent T-cells were induced irrespective of patient's age or gender. Finally, CD8 T-cell function correlated with disease-free survival. However, this result is preliminary since the study was a Phase I clinical trial. We conclude that human tumor-specific CD8 T-cells can reach functional competence in vivo, encouraging further development and Phase III trials assessing the clinical efficacy of robust vaccination strategies.
Resumo:
In the principal cell of the renal collecting duct, vasopressin regulates the expression of a gene network responsible for sodium and water reabsorption through the regulation of the water channel and the epithelial sodium channel (ENaC). We have recently identified a novel vasopressin-induced transcript (VIT32) that encodes for a 142 amino acid vasopressin-induced protein (VIP32), which has no homology with any protein of known function. The Xenopus oocyte expression system revealed two functions: (i) when injected alone, VIT32 cRNA rapidly induces oocyte meiotic maturation through the activation of the maturation promoting factor, the amphibian homolog of the universal M phase trigger Cdc2/cyclin; and (ii) when co-injected with the ENaC, VIT32 cRNA selectively downregulates channel activity, but not channel cell surface expression. In the kidney principal cell, VIP32 may be involved in the downregulation of transepithelial sodium transport observed within a few hours after vasopressin treatment. VIP32 belongs to a novel gene family ubiquitously expressed in oocyte and somatic cells that may be involved in G to M transition and cell cycling.
Resumo:
There is increasing evidence that the clinical efficacy of tamoxifen, the first and most widely used targeted therapy for estrogen-sensitive breast cancer, depends on the formation of the active metabolites 4-hydroxy-tamoxifen and 4-hydroxy-N-desmethyl-tamoxifen (endoxifen). Large inter-individual variability in endoxifen plasma concentrations has been observed and related both to genetic and environmental (i.e. drug-induced) factors altering CYP450s metabolizing enzymes activity. In this context, we have developed an ultra performance liquid chromatography-tandem mass spectrometry method (UPLC-MS/MS) requiring 100 μL of plasma for the quantification of tamoxifen and three of its major metabolites in breast cancer patients. Plasma is purified by a combination of protein precipitation, evaporation at room temperature under nitrogen, and reconstitution in methanol/20 mM ammonium formate 1:1 (v/v), adjusted to pH 2.9 with formic acid. Reverse-phase chromatographic separation of tamoxifen, N-desmethyl-tamoxifen, 4-hydroxy-tamoxifen and 4-hydroxy-N-desmethyl-tamoxifen is performed within 13 min using elution with a gradient of 10 mM ammonium formate and acetonitrile, both containing 0.1% formic acid. Analytes quantification, using matrix-matched calibration samples spiked with their respective deuterated internal standards, is performed by electrospray ionization-triple quadrupole mass spectrometry using selected reaction monitoring detection in the positive mode. The method was validated according to FDA recommendations, including assessment of relative matrix effects variability, as well as tamoxifen and metabolites short-term stability in plasma and whole blood. The method is precise (inter-day CV%: 2.5-7.8%), accurate (-1.4 to +5.8%) and sensitive (lower limits of quantification comprised between 0.4 and 2.0 ng/mL). Application of this method to patients' samples has made possible the identification of two further metabolites, 4'-hydroxy-tamoxifen and 4'-hydroxy-N-desmethyl-tamoxifen, described for the first time in breast cancer patients. This UPLC-MS/MS assay is currently applied for monitoring plasma levels of tamoxifen and its metabolites in breast cancer patients within the frame of a clinical trial aiming to assess the impact of dose increase on tamoxifen and endoxifen exposure.
Resumo:
PURPOSE: As the magnetic susceptibility induced frequency shift increases linearly with magnetic field strength, the present work evaluates manganese as a phase imaging contrast agent and investigates the dose dependence of brain enhancement in comparison to T1 -weighted imaging after intravenous administration of MnCl2 . METHODS: Experiments were carried out on 12 Sprague-Dawley rats. MnCl2 was infused intravenously with the following doses: 25, 75, 125 mg/kg (n=4). Phase, T1 -weighted images and T1 maps were acquired before and 24h post MnCl2 administration at 14.1 Tesla. RESULTS: Manganese enhancement was manifested in phase imaging by an increase in frequency shift differences between regions rich in calcium gated channels and other tissues, together with local increase in signal to noise ratio (from the T1 reduction). Such contrast improvement allowed a better visualization of brain cytoarchitecture. The measured T1 decrease observed across different manganese doses and in different brain regions were consistent with the increase in the contrast to noise ratio (CNR) measured by both T1 -weighted and phase imaging, with the strongest variations being observed in the dentate gyrus and olfactory bulb. CONCLUSION: Overall from its high sensitivity to manganese combined with excellent CNR, phase imaging is a promising alternative imaging protocol to assess manganese enhanced MRI at ultra high field. Magn Reson Med 72:1246-1256, 2014. © 2013 Wiley Periodicals, Inc.
Resumo:
Mouse mammary tumor virus (MMTV) infects B lymphocytes and expresses a superantigen on the cell surface after integration of its reverse-transcribed genome. Superantigen-dependent B- and T-cell activation becomes detectable 2 to 3 days after infection. We show here that before this event, B cells undergo a polyclonal activation which does not involve massive proliferation. This first phase of B-cell activation is T cell independent. Moreover, during the first phase of activation, when only a small fraction of B cells is infected by MMTV(SW), viral DNA is detected only in activated B cells. Such a B-cell activation is also seen after injection of murine leukemia virus but not after injection of vaccinia virus, despite the very similar kinetics and intensity of the immune response. Since retroviruses require activated target cells to induce efficient infection, these data suggest that the early polyclonal retrovirus-induced target cell activation might play an important role in the establishment of retroviral infections.
Resumo:
The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 (+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1 (+/-) mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 (+/+) mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 (+/-) mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O2 consumption and CO2 production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 (+/+) mice when fed HFD, were reduced in MCT1 (+/-) mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 (+/+) mice under high fat diet was prevented in the liver of MCT1 (+/-) mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet.
Resumo:
BACKGROUND: Fully efficient vaccines against malaria pre-erythrocytic stage are still lacking. The objective of this dose/adjuvant-finding study was to evaluate the safety, reactogenicity and immunogenicity of a vaccine candidate based on a peptide spanning the C-terminal region of Plasmodium falciparum circumsporozoite protein (PfCS102) in malaria naive adults. METHODOLOGY AND PRINCIPAL FINDINGS: Thirty-six healthy malaria-naive adults were randomly distributed into three dose blocks (10, 30 and 100 microg) and vaccinated with PfCS102 in combination with either Montanide ISA 720 or GSK proprietary Adjuvant System AS02A at days 0, 60, and 180. Primary end-point (safety and reactogenicity) was based on the frequency of adverse events (AE) and of abnormal biological safety tests; secondary-end point (immunogenicity) on P. falciparum specific cell-mediated immunity and antibody response before and after immunization. The two adjuvant formulations were well tolerated and their safety profile was good. Most AEs were local and, when systemic, involved mainly fatigue and headache. Half the volunteers in AS02A groups experienced severe AEs (mainly erythema). After the third injection, 34 of 35 volunteers developed anti-PfCS102 and anti-sporozoite antibodies, and 28 of 35 demonstrated T-cell proliferative responses and IFN-gamma production. Five of 22 HLA-A2 and HLA-A3 volunteers displayed PfCS102 specific IFN-gamma secreting CD8(+) T cell responses. Responses were only marginally boosted after the 3(rd) vaccination and remained stable for 6 months. For both adjuvants, the dose of 10 microg was less immunogenic in comparison to 30 and 100 microg that induced similar responses. AS02A formulations with 30 microg or 100 microg PfCS102 induced about 10-folds higher antibody and IFN-gamma responses than Montanide formulations. CONCLUSIONS/SIGNIFICANCE: PfCS102 peptide was safe and highly immunogenic, allowing the design of more advanced trials to test its potential for protection. Two or three immunizations with a dose of 30 microg formulated with AS02A appeared the most appropriate choice for such studies. TRIAL REGISTRATION: Swissmedic.ch 2002 DR 1227.
Resumo:
FSP27 (CIDEC in humans) is a protein associated with lipid droplets that downregulates the fatty acid oxidation (FAO) rate when it is overexpressed. However, little is known about its physiological role in liver. Here, we show that fasting regulates liver expression of Fsp27 in a time-dependent manner. Thus, during the initial stages of fasting a maximal induction of 800-fold was achieved, while during the later phase of fasting, Fsp27 expression decreased. The early response to fasting can be explained by a canonical PKA-CREB-CRTC2 signaling pathway since: i) CIDEC expression was induced by forskolin, ii) Fsp27 promoter activity was increased by CREB, and iii) Fsp27 expression was upregulated in the liver of Sirt1 knockout animals. Interestingly, pharmacological (etomoxir) or genetic (Hmgcs2 interference) inhibition of the FAO rate increases the in vivo expression of Fsp27 during fasting. Similarly, CIDEC expression was upregulated in HepG2 cells by either etomoxir or HMGCS2 interference. Our data indicate that there is a kinetic mechanism of auto-regulation between short- and long-term fasting, by which free fatty acids delivered to the liver during early fasting are accumulated/exported by FSP27/CIDEC, while over longer periods of fasting they are degraded in the mitochondria through the carnitine palmitoyl transferase (CPT) system.
Resumo:
Nanocrystalline silicon layers have been obtained by thermal annealing of films sputtered in various hydrogen partial pressures. The as-deposited and crystallized films were investigated by infrared, Raman, x-ray diffraction, electron microscopy, and optical absorption techniques. The obtained data show evidence of a close correlation between the microstructure and properties of the processed material, and the hydrogen content in the as-grown deposit. The minimum stress deduced from Raman was found to correspond to the widest band gap and to a maximum hydrogen content in the basic unannealed sample. Such a structure relaxation seems to originate from the so-called "chemical annealing" thought to be due to Si-H2 species, as identified by infrared spectroscopy. The variation of the band gap has been interpreted in terms of the changes in the band tails associated with the disorder which would be induced by stress. Finally, the layers originally deposited with the highest hydrogen pressure show a lowest stress-which does not correlate with the hydrogen content and the optical band gap¿and some texturing. These features are likely related to the presence in these layers of a significant crystalline fraction already before annealing.
Resumo:
Abstract The aim of this study was to investigate changes in running mechanics and spring-mass behaviour with fatigue induced by 5-hour hilly running (5HHR). Running mechanics were measured pre- and post-5HHR at 10, 12 and 14 km · h(-1) on an instrumented treadmill in eight ultramarathon runners, and sampled at 1000 Hz for 10 consecutive steps. Contact (t(c) ) and aerial (t(a) ) times were determined from ground reaction force (GRF) signals and used to compute step frequency (f). Maximal GRF, loading rate, downward displacement of the centre of mass (Δz), and leg length change (ΔL) during the support phase were determined and used to compute both vertical (K(vert) ) and leg (K(leg) ) stiffness. A significant decrease in t(c) was observed at 12 and 14 km · h(-1) resulting in an increase of f at all speeds. Duty factor and F(max) significantly decreased at 10 km · h(-1). A significant increase in K(vert) and K(leg) was observed at all running speeds with significant decreases in Δz and ΔL. Despite the shorter duration, the changes in running mechanics appeared to be in the same direction (increased f and K(vert) , decrease in Δz and F(max) ) but of lower amplitude compared with those obtained after an ultra-trail or an ultramarathon.
Resumo:
The magnetocaloric effect that originates from the martensitic transition in the ferromagnetic Ni-Mn-Gashape-memory alloy is studied. We show that this effect is controlled by the magnetostructural coupling at boththe martensitic variant and magnetic domain length scales. A large entropy change induced by moderatemagnetic fields is obtained for alloys in which the magnetic moment of the two structural phases is not verydifferent. We also show that this entropy change is not associated with the entropy difference between themartensitic and the parent phase arising from the change in the crystallographic structure which has beenfound to be independent of the magnetic field within this range of fields.
Resumo:
Purpose: Letrozole (LET) has recently been shown to be superior to tamoxifen for postmenopausal patients (pts). In addition, LET radiosensitizes breast cancer cells in vitro. We conducted a phase II randomized study to evaluate concurrent and sequential radiotherapy (RT)-LET in the adjuvant setting. We present here clinical results with a minimum follow-up of 24 months. Patients and Methods: Postmenopausal pts with early-stage breast cancer were randomized after conservative surgery to either: A) concurrent RT-LET (LET started 3 weeks before the first day of RT) or B) sequential RT-LET (LET started 3 weeks after the end of RT). Whole breast RT was delivered to a total dose of 50 Gy. A 10-16 Gy boost was allowed according to age and pathological prognostic factors. Pts were stratified by center, adjuvant chemotherapy, boost, and radiation-induced CD8 apoptosis (RILA). RILA was performed before RT as previously published (Ozsahin et al. Clin Cancer Res, 2005). An independent monitoring committee reviewed individual safety data. Skin toxicities were evaluated by two different clinicians at each medical visit (CTCAE v3.0). Lung CT-scan and functional pulmonary tests were performed regularly. DNA samples were screened for SNPs in candidate genes as recently published (Azria et al., Clin Cancer Res, 2008). Results: A total of 150 pts were randomized between 01/05 and 02/07. Median follow-up is 26 months (range, 3-40 months). No statistical differences were identified between the two arms in terms of mean age; initial TNM; median surgical bed volume; post surgical breast volume. Chemotherapy and RT boost were delivered in 19% and 38% of pts, respectively. Nodes received 50 Gy in 23% of patients without differences between both arms. During RT and within the first 6 weeks after RT, 10 patients (6.7%) presented grade 3 acute skin dermatitis during RT but no differences were observed between both arms (4 and 6 patients in arm A and B, respectively). At 26 month of follow-up, grade 2 and more radiation-induced subcutaneous fibrosis (RISCF) was present in 4 patients (3%) without any difference between arm A (n = 2) and B (n = 2), p=0.93. In both arms, all patients that presented a RICSF had a RILA lower than 16%. Sensitivity and specificity were 100% and 39%, respectively.No acute lung toxicities were observed and quality of life was good to excellent for all patients.SNPs analyses are still on-going (Pr Rosenstein, NY). Conclusion: Acute and early late grade 2 dermatitis were similar in both arms. The only factor that influenced RISCF was a low radiation-induced lymphocyte apoptosis yield. We confirmed prospectively the capacity of RILA for identifying hypersensitive patients to radiation. Indeed, patients with RILA superior to 16% did not present late effects to radiation and confirmed the first prospective trial we published in 2005 (Ozsahin et al., Clin Cancer Res).
Resumo:
We propose a novel mechanism leading to spatiotemporal oscillations in extended systems that does not rely on local bulk instabilities. Instead, oscillations arise from the interaction of two subsystems of different spatial dimensionality. Specifically, we show that coupling a passive diffusive bulk of dimension d with an excitable membrane of dimension d-1 produces a self-sustained oscillatory behavior. An analytical explanation of the phenomenon is provided for d=1. Moreover, in-phase and antiphase synchronization of oscillations are found numerically in one and two dimensions. This novel dynamic instability could be used by biological systems such as cells, where the dynamics on the cellular membrane is necessarily different from that of the cytoplasmic bulk.
Resumo:
A mechanism of extraction of tubular membranes from a lipid vesicle is presented. A concentration gradient of anchoring amphiphilic polymers generates tubes from budlike vesicle protrusions. We explain this mechanism in the framework of the Canham-Helfrich model. The energy profile is analytically calculated and a tube with a fixed length, corresponding to an energy minimum, is obtained in a certain regime of parameters. Further, using a phase-field model, we corroborate these results numerically. We obtain the growth of tubes when a polymer source is added, and the budlike shape after removal of the polymer source, in accordance with recent experimental results.
Resumo:
An effect of multiplicative noise in the time-dependent Ginzburg-Landau model is reported, namely, that noise at a relatively low intensity induces a phase transition towards an ordered state, whereas strong noise plays a destructive role, driving the system back to its disordered state through a reentrant phase transition. The phase diagram is calculated analytically using a mean-field theory and a more sophisticated approach and is compared with the results from extensive numerical simulations.