942 resultados para Thermal and photochemical transformations
Resumo:
A tubular electrochemical flow-cell for iridium deposition on the inner surface of pyrolytic graphite tube for permanent chemical modification is proposed. A transversal heated graphite tube was used as working electrode, a cylindrical piece of graphite inserted into the graphite tube as auxiliary electrode, and a micro Ag/AgCl(sat) as reference electrode. Iridium solution in 1.0 mol L-1 HCl, flowing at 0.55 mL min-1 for 60 min was used to perform the electrochemical modification. The applied potential to the flow-cell was - 0.700 V vs Ag/AgCl. Scanning electron microscopy images were taken for thermal and electrochemical modified graphite surface in order to evaluate the iridium distribution. Selenium hydride trapping was used to verify the performance of the proposed permanent chemical modifier.
Resumo:
Soodakattilan sulakeon epästationaarinen käyttäytyminen sekä keon pitkä jäähtymisaika alasajon jälkeen ovat aiheuttaneet ongelmia kattilan taloudellisessa käytettävyydessä. Keon käyttäytymisestä on luotu CFD-malleja, joiden tavoitteena on havainnollistaa keon lämpötilajakaumaa ja rakennetta. Mallien ongelmana on se, että niissä huomioidaan vain keon aktiivinen pintakerros. Keon sisäosan rakennetta ja siinä tapahtuvia prosesseja ei toistaiseksi tunneta kunnolla luotettavan, koko keon kattavan mallin luomiseen. Tässä työssä tutkittiin sulakeon käytön aikana havaittuja muutosilmiöitä, jotka vaikuttavat keon rakenteeseen ja ominaisuuksiin sekä tutkittiin ilmiöiden taustalla olevia tekijöitä. Näitä tekijöitä ovat keon sisässä tapahtuvat kemialliset ja fyysiset prosessit, jotka aiheuttavat muutoksia niin lämpöteknisesti kuin fyysisesti sekä ulkoapäin tulevat tekijät, jotka aiheutuvat ajotilanteiden seurauksena tapahtuvista muutoksista. Työn kokeellisena osana luotiin sulakeon jäähtymismalli käyttäen 1-dimensionaalista ADL-mallia. Mallin pohjana käytettiin StoraEnso Oy:ltä Oulun soodakattilan sulakeosta saatua mittausraporttia. ADL-mallin avulla luotiin keon jäähtymiskäyrät lämpötilan ja syvyyden funktiona. Saadut käyrät täsmäsivät hyvin mittausraportin tuloksiin. Mallin avulla keolle saatiin muodostettua energiatase, jonka tuloksena keosta 12 tunnin aikana poistuva lämpövirta pinnalla oli noin 9.8kW/m2 ja pinnan lämmönsiirtokerroin 58.3W/m²°C. Pohjan poistuvaksi lämpövirraksi saatiin 14.1kW/m2 ja lämmönsiirtokertoimeksi 75.4W/m²°C. Termiseksi diffuusiokertoimeksi saatiin 3.9•10-7m²/s.
Resumo:
This study presents Pd determinations in bovine tissue samples containing palladium prepared in the laboratory, and CCQM-P63 automotive catalyst materials of the Proficiency Test, using instrumental thermal and epithermal neutron activation analysis and energy dispersive X-ray fluorescence techniques. Solvent extraction and solid phase extraction procedures were also applied to separate Pd from interfering elements before the irradiation in the nuclear reactor. The results obtained by different techniques were compared against each other to examine sensitivity, precision and accuracy.
Resumo:
Industrial hazardous wastes must receive appropriate treatment to ensure a safe disposal to humans and environment. One of the techniques adopted for this purpose is the stabilization/solidification in polymer matrices. This paper evaluated the use of recycled polyethylene terephthalate as an incorporation matrix of incinerator ash. The polymer and the ash were submitted to an extrusion process in different percentages. The final product was evaluated through thermal and leaching tests and the leachate extracts constituents were determinated by atomic absorption spectrophotometry. The results showed a reduction in the release of substances up to 99% by mass for the conditions used.
Resumo:
The sustainable development of an emergent country is dependent on a consistent scientific, technologic and innovative policy, on nature and biodiversity, on a rational exploration of natural resources to feeding, social advance and economical aim along with maintenance of health and diseases treatment. Phytochemical investigations may be used to contribute with development throughout undergraduate and graduate career preparing professionals with qualification to these activities, as researcher and professor, including discovering and divulgation of new scientific knowlegments. The role of organic compounds produced by secondary metabolism of plants in the development of new drugs is presented (e. g.) throughout exposition using examples of features involved in this activity, since the recognition of a plant-derived popular medicine, until the laboratory semi-synthesis of its main constituents. Several aspects related to the use of some vegetable species in treatment of many tropical diseases are pointed. Economical and social importance of isolation, structural characterization, pharmacological investigation and chemical transformations of new natural organic substances isolated from the plants are related.
Resumo:
Presently glycerol is considered a co-product of biodiesel industry. As the biodiesel production is exponentially increasing, glycerol generated from the transesterification of vegetable oils and fats is also being produced on a large scale, and turned out to be essential seeking for novel alternatives to the consumption of the extra volume, in crude and/or as derivatives high added value. This review mainly deals with chemical and enzymatic transformations of glycerol to obtain chiral building blocks for synthesis of pharmaceuticals and natural products.
Resumo:
Nanocomposite materials have been incorporated into biopolymers, (e.g. hydroxypropyl methylcellulose), to improve their physical and chemical properties and enable them to be applied in food packaging, especially for their biodegradable and renewable properties. With this addition, fruit puree has been incorporated into the films to confer nutritional properties besides color and flavor. Chitosan is of interest in the packaging field since it is a biodegradable, bioabsorbable, antimicrobial agent. Furthermore, chitosan nanoparticles have been widely explored for their interesting properties and potential applications in food packaging. This work was divided into two stages: (1) chitosan nanoparticle synthesis; (2) addition of nanoparticles into HPMC and papaya puree films. Addition of chitosan nanoparticles to HPMC and papaya puree films improved film properties: mechanical, thermal and water vapor barrier. We have developed a novel nanomaterial with great potential for application in packaging to prolong the shelf life of food.
Resumo:
Ceramics are widely used in industrial applications due to their advantageous thermal and mechanical stability. Corrosion of ceramics is a great problem resulting in significant costs. Coating is one method of reducing adversities of corrosion. There are several different thin film deposition processes available such as sol-gel, Physical and Chemical Vapour Deposition (PVD and CVD). One of the CVD processes, called Atomic Layer Deposition (ALD) stands out for its excellent controllability, accuracy and wide process capability. The most commonly mentioned disadvantage of this method is its slowness which is partly compensated by its capability of processing large areas at once. Several factors affect the ALD process. Such factors include temperature, the grade of precursors, pulse-purge times and flux of precursors as well as the substrate used. Wrongly chosen process factors may cause loss of self-limiting growth and thus, non-uniformities in the deposited film. Porous substrates require longer pulse times than flat surfaces. The goal of this thesis was to examine the effects of ALD films on surface properties of a porous ceramic material. The analyses applied were for permeability, bubble point pressure and isoelectric point. In addition, effects of the films on corrosion resistance of the substrate in aqueous environment were investigated. After being exposured to different corrosive media the ceramics and liquid samples collected were analysed both mechanically and chemically. Visual and contentual differences between the exposed and coated ceramics versus the untreated and uncoated ones were analysed by scanning electron microscope. Two ALD film materials, dialuminium trioxide and titanium dioxide were deposited on the ceramic substrate using different pulse times. The results of both film materials indicated that surface properties of the ceramic material can be modified to some extent by the ALD method. The effect of the titanium oxide film on the corrosion resistance of the ceramic samples was observed to be fairly small regardless of the pulse time.
Resumo:
The characterization of different ecological groups in a forest formation/succession is unclear. To better define the different successional classes, we have to consider ecophysiological aspects, such as the capacity to use or dissipate the light energy available. The main objective of this work was to assess the chlorophyll fluorescence emission of tropical tree species growing in a gap of a semi-deciduous forest. Three species of different ecological groups were selected: Croton floribundus Spreng. (pioneer, P), Astronium graveolens Jacq. (early secondary, Si), and Esenbeckia febrifuga A. Juss. (late secondary, St). The potential (Fv/Fm) and effective (deltaF/Fm') quantum efficiency of photosystem II, apparent electron transport rate (ETR), non-photochemical (qN) and photochemical (qP) quenching of fluorescence were evaluated, using a modulated fluorometer, between 7:30 and 11:00 h. Values of Fv/Fm remained constant in St, decreasing in P and Si after 9:30 h, indicating the occurrence of photoinhibition. Concerning the measurements taken under light conditions (deltaF/Fm', ETR, qP and qN), P and Si showed better photochemical performance, i.e., values of deltaF/Fm', ETR and qP were higher than St when light intensity was increased. Values of qN indicated that P and Si had an increasing tendency of dissipating the excess of energy absorbed by the leaf, whereas the opposite was found for St. The principal component analysis (PCA), considering all evaluated parameters, showed a clear distinction between St, P and Si, with P and Si being closer. The PCA results suggest that chlorophyll fluorescence may be a potential tool to differentiate tree species from distinct successional groups.
Resumo:
Current industrial atomic layer deposition (ALD) processes are almost wholly confined to glass or silicon substrates. For many industrial applications, deposition on polymer substrates will be necessary. Current deposition processes are also typically carried out at temperatures which are too high for polymers. If deposition temperatures in ALD can be reduced to the level applicable for polymers, it will open new interesting areas and applications for polymeric materials. The properties of polymers can be improved for example by coatings with functional and protective properties. Although the ALD has shown its capability to operate at low temperatures suitable for polymer substrates, there are other issues related to process efficiency and characteristics of different polymers where new knowledge will assist in developing industrially conceivable ALD processes. Lower deposition temperature in ALD generally means longer process times to facilitate the self limiting film growth mode characteristic to ALD. To improve process efficiency more reactive precursors are introduced into the process. For example in ALD oxide processes these can be more reactive oxidizers, such as ozone and oxygen radicals, to substitute the more conventionally used water. Although replacing water in the low temperature ALD with ozone or plasma generated oxygen radicals will enable the process times to be shortened, they may have unwanted effects both on the film growth and structure, and in some cases can form detrimental process conditions for the polymer substrate. Plasma assistance is a very promising approach to improve the process efficiency. The actual design and placement of the plasma source will have an effect on film growth characteristics and film structure that may retard the process efficiency development. Due to the fact that the lifetime of the radicals is limited, it requires the placement of the plasma source near to the film growth region. Conversely this subjects the substrate to exposure byother plasma species and electromagnetic radiation which sets requirements for plasma conditions optimization. In this thesis ALD has been used to modify, activate and functionalize the polymer surfaces for further improvement of polymer performance subject to application. The issues in ALD on polymers, both in thermal and plasma-assisted ALD will be further discussed.
Resumo:
Thermal and air conditions inside animal facilities change during the day due to the influence of the external environment. For statistical and geostatistical analyses to be representative, a large number of points spatially distributed in the facility area must be monitored. This work suggests that the time variation of environmental variables of interest for animal production, monitored within animal facility, can be modeled accurately from discrete-time records. The aim of this study was to develop a numerical method to correct the temporal variations of these environmental variables, transforming the data so that such observations are independent of the time spent during the measurement. The proposed method approached values recorded with time delays to those expected at the exact moment of interest, if the data were measured simultaneously at the moment at all points distributed spatially. The correction model for numerical environmental variables was validated for environmental air temperature parameter, and the values corrected by the method did not differ by Tukey's test at 5% significance of real values recorded by data loggers.
Resumo:
This thesis presents a one-dimensional, semi-empirical dynamic model for the simulation and analysis of a calcium looping process for post-combustion CO2 capture. Reduction of greenhouse emissions from fossil fuel power production requires rapid actions including the development of efficient carbon capture and sequestration technologies. The development of new carbon capture technologies can be expedited by using modelling tools. Techno-economical evaluation of new capture processes can be done quickly and cost-effectively with computational models before building expensive pilot plants. Post-combustion calcium looping is a developing carbon capture process which utilizes fluidized bed technology with lime as a sorbent. The main objective of this work was to analyse the technological feasibility of the calcium looping process at different scales with a computational model. A one-dimensional dynamic model was applied to the calcium looping process, simulating the behaviour of the interconnected circulating fluidized bed reactors. The model incorporates fundamental mass and energy balance solvers to semi-empirical models describing solid behaviour in a circulating fluidized bed and chemical reactions occurring in the calcium loop. In addition, fluidized bed combustion, heat transfer and core-wall layer effects were modelled. The calcium looping model framework was successfully applied to a 30 kWth laboratory scale and a pilot scale unit 1.7 MWth and used to design a conceptual 250 MWth industrial scale unit. Valuable information was gathered from the behaviour of a small scale laboratory device. In addition, the interconnected behaviour of pilot plant reactors and the effect of solid fluidization on the thermal and carbon dioxide balances of the system were analysed. The scale-up study provided practical information on the thermal design of an industrial sized unit, selection of particle size and operability in different load scenarios.
Resumo:
The Brazilian Atlantic Rainforest is a highly heterogeneous ecosystem comprising large numbers of tropical and subtropical habitats favorable to the development of cyanobacteria. Studies on cyanobacteria in this ecosystem are still rare, however, especially those involving unicellular and colonial types. The high biodiversity and endemism of this biome has been extremely impacted and fragmented, and less than 10% of its original vegetation cover remains today. We describe here a new species of a colonial cyanobacteria, Lemmermanniella terrestris, found on dry soils in a subtropical region of the Atlantic Rainforest in the municipality of Cananéia in southern São Paulo State, Brazil. This new taxon demonstrated all of the diacritical features of the genus Lemmermanniella but, unlike the other species of the genus, it was growing on the soil surface and not in an aquatic environment. A set of morphological features, including colonies composed of subcolonies, and cell dimensions, shapes and contents distinguish it from other species of the genus. Considering that species of Lemmermanniella are found in very distinct habitats (such as thermal and brackish waters) and that they maintain the same life cycle described for the genus in all of those environments, the morphological structures of the colonies can be used as reliable markers for identifying the genus, and its species differ primarily in relation to the habitats they occupy.
Resumo:
This thesis is done as a part of the NEOCARBON project. The aim of NEOCARBON project is to study a fully renewable energy system utilizing Power-to-Gas or Power-to-Liquid technology for energy storage. Power-to-Gas consists of two main operations: Hydrogen production via electrolysis and methane production via methanation. Methanation requires carbon dioxide and hydrogen as a raw material. This thesis studies the potential carbon dioxide sources within Finland. The different sources are ranked using the cost and energy penalty of the carbon capture, carbon biogenity and compatibility with Power-to-Gas. It can be concluded that in Finland there exists enough CO2 point sources to provide national PtG system with sufficient amounts of carbon. Pulp and paper industry is single largest producer of biogenic CO2 in Finland. It is possible to obtain single unit capable of grid balancing operations and energy transformations via Power-to-Gas and Gas-to-Power by coupling biogas plants with biomethanation and CHP units.
Resumo:
In the work reported here, optically clear, ultrathin TEOS derived sol-gel slides which were suitable for studies of tryptophan (Trp) fluorescence from entrapped proteins were prepared by the sol-gel technique and characterized. The monitoring of intrinsic protein fluorescence provided information about the structure and environment of the entrapped protein, and about the kinetics of the interaction between the entrapped protein and extemal reagents. Initial studies concentrated on the single Trp protein monellin which was entrapped into the sol-gel matrices. Two types of sol-gel slides, termed "wet aged", in which the gels were aged in buffer and "dry-aged", in which the gels were aged in air , were studied in order to compare the effect of the sol-gel matrix on the structure of the protein at different aging stages. Fluorescence results suggested that the mobility of solvent inside the slides was substantially reduced. The interaction of the entrapped protein with both neutral and charged species was examined and indicated response times on the order of minutes. In the case of the neutral species the kinetics were diffusion limited in solution, but were best described by a sum of first order rate constants when the reactions occurred in the glass matrix. For charged species, interactions between the analytes and the negatively charged glass matrix caused the reaction kinetics to become complex, with the overall reaction rate depending on both the type of aging and the charge on the analyte. The stability and conformational flexibility of the entrapped monellin were also studied. These studies indicated that the encapsulation of monellin into dry-aged monoliths caused the thermal unfolding transition to broaden and shift upward by 14°C, and causedthe long-term stability to improve by 12-fold (compared to solution). Chemical stability studies also showed a broader transition for the unfolding of the protein in dry-aged monoliths, and suggested that the protein was present in a distribution of environments. Results indicated that the entrapped proteins had a smaller range of conformational motions compared to proteins in solution, and that entrapped proteins were not able to unfold completely. The restriction of conformational motion, along with the increased structural order of the internal environment of the gels, likely resulted in the improvements in themial and long-term stability that were observed. A second protein which was also studied in this work is the metal binding protein rat oncomodulin. Initially, the unfolding behavior of this protein in aqueous solution was examined. Several single tryptophan mutants of the metal-binding protein rat oncomodulin (OM) were examined; F102W, Y57W, Y65W and the engineered protein CDOM33 which had all 12 residues of the CD loop replaced with a higher affinity binding loop. Both the thermal and the chemical stability were improved upon binding of metal ions with the order apo < Ca^^ < Tb^"^. During thermal denaturation, the transition midpoints (Tun) of Y65W appeared to be the lowest, followed by Y57W and F102W. The placement of the Trp residue in the F-helix in F102W apparently made the protein slightly more thermostable, although the fluorescence response was readily affected by chemical denaturants, which probably acted through the disruption of hydrogen bonds at the Cterminal end of the F-helix. Under both thermal and chemical denaturation, the engineered protein showed the highest stability. This indicated that increasing the number of metal ligating oxygens in the binding site, either by using a metal ion with a higher coordinatenumber (i.e. Tb^*) which binds more carboxylate ligands, or by providing more ligating groups, as in the CDOM33 replacement, produces notable improvements in protein stability. Y57W and CE)OM33 OM were chosen for further studies when encapsulated into sol-gel derived matrices. The kinetics of interaction of terbium with the entrapped proteins, the ability of the entrapped protein to binding terbium, as well as thermal stability of these two entrapped protein were compared with different levels of Ca^"*^ present in the matrix and in solution. Results suggested that for both of the proteins, the response time and the ability to bind terbium could be adjusted by adding excess calcium to the matrix before gelation. However, the less stable protein Y57W only retained at most 45% of its binding ability in solution while the more stable protein CDOM33 was able to retain 100% binding ability. Themially induced denaturation also suggested that CDOM33 showed similar stability to the protein in solution while Y57W was destabilized. All these results suggested that "hard" proteins (i.e. very stable) can easily survive the sol-gel encapsulation process, but "soft" proteins with lower thermodynamic stability may not be able to withstand the sol-gel process. However, it is possible to control many parameters in order to successfully entrap biological molecules into the sol-gel matrices with maxunum retention of activity.