741 resultados para Theoretical mathematics
Resumo:
One of the key tenets in Wittgenstein’s philosophy of mathematics is that a mathematical proposition gets its meaning from its proof. This seems to have the paradoxical consequence that a mathematical conjecture has no meaning, or at least not the same meaning that it will have once a proof has been found. Hence, it would appear that a conjecture can never be proven true: for what is proven true must ipso facto be a different proposition from what was only conjectured. Moreover, it would appear impossible that the same mathematical proposition be proven in different ways. — I will consider some of Wittgenstein’s remarks on these issues, and attempt to reconstruct his position in a way that makes it appear less paradoxical.
Resumo:
In this article Geoff Tennant and Dave Harries report on the early stages of a research project looking to examine the transition from Key Stage (KS) 2 to 3 of children deemed Gifted and Talented (G&T) in mathematics. An examination of relevant literature points towards variation in definition of key terms and underlying rationale for activities. Preliminary fieldwork points towards a lack of meaningful communication between schools, with primary school teachers in particular left to themselves to decide how to work with children deemed G&T. Some pointers for action are given, along with ideas for future research and a request for colleagues interested in working with us to get in touch.
Resumo:
This paper contributes to a fast growing literature which introduces game theory in the analysis of real option investments in a competitive setting. Specifically, in this paper we focus on the issue of multiple equilibria and on the implications that different equilibrium selections may have for the pricing of real options and for subsequent strategic decisions. We present some theoretical results of the necessary conditions to have multiple equilibria and we show under which conditions different tie-breaking rules result in different economic decisions. We then present a numerical exercise using the in formation set obtained on a real estate development in South London. We find that risk aversion reduces option value and this reduction decreases marginally as negative externalities decrease.
Resumo:
This text contains papers presented at the Institute of Mathematics and its Applications Conference on Control Theory, held at the University of Strathclyde in Glasgow. The contributions cover a wide range of topics of current interest to theoreticians and practitioners including algebraic systems theory, nonlinear control systems, adaptive control, robustness issues, infinite dimensional systems, applications studies and connections to mathematical aspects of information theory and data-fusion.
Resumo:
We study linear variable coefficient control problems in descriptor form. Based on a behaviour approach and the general theory for linear differential algebraic systems we give the theoretical analysis and describe numerically stable methods to determine the structural properties of the system.
Resumo:
Research into understanding bacterial chemotactic systems has become a paradigm for Systems Biology. Experimental and theoretical researchers have worked hand-in-hand for over 40 years to understand the intricate behavior driving bacterial species, in particular how such small creatures, usually not more than 5 µm in length, detect and respond to small changes in their extracellular environment. In this review we highlight the importance that theoretical modeling has played in providing new insight and understanding into bacterial chemotaxis. We begin with an overview of the bacterial chemotaxis sensory response, before reviewing the role of theoretical modeling in understanding elements of the system on the single cell scale and features underpinning multiscale extensions to population models. WIREs Syst Biol Med 2012 doi: 10.1002/wsbm.1168 For further resources related to this article, please visit the WIREs website.
Resumo:
Teaching mathematics to students in the biological sciences is often fraught with difficulty. Students often discover mathematics to be a very 'dry' subject in which it is difficult to see the motivation of learning it given its often abstract application. In this paper I advocate the use of mathematical modelling as a method for engaging students in understanding the use of mathematics in helping to solve problems in the Biological Sciences. The concept of mathematics as a laboratory tool is introduced and the importance of presenting students with relevant, real-world examples of applying mathematics in the Biological Sciences is discussed.
Resumo:
A theoretical framework for the joint conservation of energy and momentum in the parameterization of subgrid-scale processes in climate models is presented. The framework couples a hydrostatic resolved (planetary scale) flow to a nonhydrostatic subgrid-scale (mesoscale) flow. The temporal and horizontal spatial scale separation between the planetary scale and mesoscale is imposed using multiple-scale asymptotics. Energy and momentum are exchanged through subgrid-scale flux convergences of heat, pressure, and momentum. The generation and dissipation of subgrid-scale energy and momentum is understood using wave-activity conservation laws that are derived by exploiting the (mesoscale) temporal and horizontal spatial homogeneities in the planetary-scale flow. The relations between these conservation laws and the planetary-scale dynamics represent generalized nonacceleration theorems. A derived relationship between the wave-activity fluxes-which represents a generalization of the second Eliassen-Palm theorem-is key to ensuring consistency between energy and momentum conservation. The framework includes a consistent formulation of heating and entropy production due to kinetic energy dissipation.
Resumo:
To retain competitiveness, succeed and flourish, organizations are forced to continuously innovate. This drive for innovation is not solely limited to product/process innovation but more profoundly relates to a continuous process of improving how organizations work internally, requiring a constant stream of ideas and suggestions from motivated employees. In this chapter we investigate some recent developments and propose a conceptual framework for creative participation as a personality driven interface between creativity and innovation. Under the assumption that employees’ intrinsic willingness to contribute novel ideas and solutions requires a set of personal characteristics and necessary skill that might well be unique to each organizational unit, the chapter then explores personal characteristics associated with creativity, innovation and innovative behavior. Various studies on the correlation between creativity and personality types are also reviewed. The chapter provides a discussion of solutions and future development together with recommendations for the future research.
Resumo:
M-type barium hexaferrite (BaM) is a hard ferrite, crystallizing in space group P6(3)/mmc possessing a hexagonal magneto-plumbite structure, which consists of alternate hexagonal and spinel blocks. The structure of BaM is thus related to those of garnet and spinel ferrite. However the material has proved difficult to synthesize. By taking into account the presence of the spinel block in barium hexagonal ferrite, highly efficient new synthetic methods were devised with routes significantly different from existing ones. These successful variations in synthetic methods have been derived by taking into account a detailed investigation of the structural features of barium hexagonal ferrite and the least change principle whereby configuration changes are kept to a minimum. Thus considering the relevant mechanisms has helped to improve the synthesis efficiencies for both hydrothermal and co-precipitation methods by choosing conditions that invoke the formation of the cubic block or the less stable Fe3O4. The role played by BaFe2O4 in the synthesis is also discussed. The distribution of iron from reactants or intermediates among different sites was also successfully explained. The proposed mechanisms are based on the principle that the cubic block must be self-assembled to form the final product. Thus, it is believed that these formulated mechanisms should be helpful in designing experiments to obtain a deeper understanding of the synthesis process and to investigate the substitution of magnetic ions with doping ions.