849 resultados para The Production of Space
Resumo:
Each September since 1983 in the rural Shire of Ravensthorpe, Western Australia, volunteers collect samples of up to 700 wildfl ower species which are then displayed in the Ravensthorpe Senior Citizens Centre from 9.00 am to 4.00 pm daily over a two-week period. This chapter offers an ethnographic interpretation of this enduring annual event focusing on the 25th show held in 2007. The study contributes to understanding the complex and nuanced role of local wildflower shows in shaping and supporting rural senses of place and of community. Importantly, this particular type of festival, and more specifically this local instance, foregrounds a less-remarked aspect of festivals, namely the (re)production and celebration of place-specific knowledge through validations of, and interconnections between, scientific flower classification and emotive experience. This feature, encapsulated in Laurel Lamperd’s poem above, invites consideration of the ways in which local place knowledge and the simultaneous (re)production of ‘place’ are constituted by a complex layering of rational, objective ways of knowing and those which emphasize emotions, aesthetics and memories. This rural wildflower show not only mobilises both the rational and the emotional in ‘making sense of the world’ for local residents and for tourists, but also offers insights into the production of place as constituted in and through relations between humans and non-human life forms (Cloke & Jones, 2001; Conradson, 2005; see also Chapter 6).
Resumo:
Metastasis, the passage of primary tumour cells throughout the body via the vascular system and their subsequent proliferation into secondary lesions in distant organs, represents a poor prognosis and therefore an understandably feared event for cancer patients. Despite considerable advances in cancer diagnosis and treatment, most deaths are the result of metastases resistant to conventional treatment [1]. Rather than being a random process, metastasis involves a series of organised steps leading to the growth of a secondary tumour. Malignant tumours stimulate the production of new vessels by the host, and this process is a prerequisite for the increase in size of a new tumour [2]. Angiogenesis, not only permits tumour expansion but also allows the entry of tumour cells into the circulation and is probably the most vital event for the metastatic process [3]. Metastasis and angiogenesis [4] have received much attention in recent years. A biological understanding of both phenomena seems to be an urgent priority towards the search for an effective prevention and treatment of tumour progression. Studies in vitro and in vivo have shown that one of the most important barriers to the passage of malignant cells is the basement membrane. The crossing of such barriers is a vital step in the formation of a metastasis [5].
Resumo:
Lignocellulosics represent a renewable resource for producing fuels and chemicals as an alternative to fossil resources. This study utilised an organic acid catalyst and a co-solvent to develop an environmentally friendly processing technology for the production of levulinic acid and furfural from a waste material, sugarcane fibre.
Resumo:
The Climate Change Adaptation for Natural Resource Management (NRM) in East Coast Australia Project aims to foster and support an effective “community of practice” for climate change adaptation within the East Coast Cluster NRM regions that will increase the capacity for adaptation to climate change through enhancements in knowledge and skills and through the establishment of long‐term collaborations. It is being delivered by six consortium research partners: * The University of Queensland (project lead) * Griffith University * University of the Sunshine Coast * CSIRO * New South Wales Office of Environment and Heritage * Queensland Department of Science, IT, Innovation and the Arts (Queensland Herbarium). The project relates to the East Coast Cluster, comprising the six coastal NRM regions and regional bodies between Rockhampton and Sydney: * Fitzroy Basin Association (FBA) * Burnett‐Mary Regional Group (BMRG) * SEQ Catchments (SEQC) * Northern Rivers Catchment Management Authority (CMA) (NRCMA) * Hunter‐Central Rivers CMA (HCRCMA) * Hawkesbury Nepean CMA (HNCMA). The aims of this report are to summarise the needs of the regional bodies in relation to NRM planning for climate change adaptation, and provide a basis for developing the detailed work plan for the research consortium. Two primary methods were used to identify the needs of the regional bodies: (1) document analysis of the existing NRM/ Catchment Action Plans (CAPs) and applications by the regional bodies for funding under Stream 1 of the Regional NRM Planning for Climate Change Fund, and; (2) a needs analysis workshop, held in May 2013 involving representatives from the research consortium partners and the regional bodies. The East Coast Cluster includes five of the ten largest significant urban areas in Australia, world heritage listed natural environments, significant agriculture, mining and extensive grazing. The three NSW CMAs have recently completed strategic level CAPs, with implementation plans to be finalised in 2014/2015. SEQC and FBA are beginning a review of their existing NRM Plans, to be completed in 2014 and 2015 respectively; while BMRG is aiming to produce a NRM and Climate Variability Action Strategy. The regional bodies will receive funding from the Australian Government through the Regional NRM Planning for Climate Change Fund (NRM Fund) to improve regional planning for climate change and help guide the location of carbon and biodiversity activities, including wildlife corridors. The bulk of the funding will be available for activities in 2013/2014, with smaller amounts available in subsequent years. Most regional bodies aim to have a large proportion of the planning work complete by the end of 2014. In addition, NSW CMAs are undergoing major structural change and will be incorporated into semi‐autonomous statutory Local Land Services bodies from 2014. Boundaries will align with local government boundaries and there will be significant change in staff and structures. The regional bodies in the cluster have a varying degree of climate knowledge. All plans recognise climate change as a key driver of change, but there are few specific actions or targets addressing climate change. Regional bodies also have varying capacity to analyse large volumes of spatial or modelling data. Due to the complex nature of natural resource management, all regional bodies work with key stakeholders (e.g. local government, industry groups, and community groups) to deliver NRM outcomes. Regional bodies therefore require project outputs that can be used directly in stakeholder engagement activities, and are likely to require some form of capacity building associated with each of the outputs to maximise uptake. Some of the immediate needs of the regional bodies are a summary of information or tools that are able to be used immediately; and a summary of the key outputs and milestone dates for the project, to facilitate alignment of planning activities with research outputs. A project framework is useful to show the linkages between research elements and the relevance of the research to the adaptive management cycle for NRM planning in which the regional bodies are engaged. A draft framework is proposed to stimulate and promote discussion on research elements and linkages; this will be refined during and following the development of the detailed project work plan. The regional bodies strongly emphasised the need to incorporate a shift to a systems based resilience approach to NRM planning, and that approach is included in the framework. The regional bodies identified that information on climate projections would be most useful at regional and subregional scale, to feed into scenario planning and impact analysis. Outputs should be ‘engagement ready’ and there is a need for capacity building to enable regional bodies to understand and use the projections in stakeholder engagement. There was interest in understanding the impacts of climate change projections on ecosystems (e.g. ecosystem shift), and the consequent impacts on the production of ecosystem services. It was emphasised that any modelling should be able to be used by the regional bodies with their stakeholders to allow for community input (i.e. no black box models). The online regrowth benefits tool was of great interest to the regional bodies, as spatial mapping of carbon farming opportunities would be relevant to their funding requirements. The NSW CMAs identified an interest in development of the tool for NSW vegetation types. Needs relating to socio‐economic information included understanding the socio‐economic determinants of carbon farming uptake and managing community expectations. A need was also identified to understand the vulnerability of industry groups as well as community to climate change impacts, and in particular understanding how changes in the flow of ecosystem services would interact with the vulnerability of these groups to impact on the linked ecologicalsocio‐economic system. Responses to disasters (particularly flooding and storm surge) and recovery responses were also identified as being of interest. An ecosystem services framework was highlighted as a useful approach to synthesising biophysical and socioeconomic information in the context of a systems based, resilience approach to NRM planning. A need was identified to develop processes to move towards such an approach to NRM planning from the current asset management approach. Examples of best practice in incorporating climate science into planning, using scenarios for stakeholder engagement in planning and processes for institutionalising learning were also identified as cross‐cutting needs. The over‐arching theme identified was the need for capacity building for the NRM bodies to best use the information available at any point in time. To this end a planners working group has been established to support the building of a network of informed and articulate NRM agents with knowledge of current climate science and capacity to use current tools to engage stakeholders in NRM planning for climate change adaptation. The planners working group would form the core group of the community of practice, with the broader group of stakeholders participating when activities aligned with their interests. In this way, it is anticipated that the Project will contribute to building capacity within the wider community to effectively plan for climate change adaptation.
Resumo:
Malaria is a global health problem; an effective vaccine is urgently needed. Due to the relative poverty and lack of infrastructure in malaria endemic areas, DNA-based vaccines that are stable at ambient temperatures and easy to formulate have great potential. While attention has been focused mainly on antigen selection, vector design and efficacy assessment, the development of a rapid and commercially viable process to manufacture DNA is generally overlooked. We report here a continuous purification technique employing an optimized stationary adsorbent to allow high-vaccine recovery, low-processing time, and, hence, high-productivity. A 40.0 mL monolithic stationary phase was synthesized and functionalized with amino groups from 2-Chloro-N,N- diethylethylamine hydrochloride for anion-exchange isolation of a plasmid DNA (pDNA) that encodes a malaria vaccine candidate, VR1020-PyMSP4/5. Physical characterization of the monolithic polymer showed a macroporous material with a modal pore diameter of 750 nm. The final vaccine product isolated after 3 min elution was homogeneous supercoiled plasmid with gDNA, RNA and protein levels in keeping with clinical regulatory standards. Toxicological studies of the pVR1020-PyMSP4/5 showed a minimum endotoxin level of 0.28 EU/m.g pDNA. This cost-effective technique is cGMP compatible and highly scalable for the production of DNA-based vaccines in commercial quantities, when such vaccines prove to be effective against malaria. © 2008 American Institute of Chemical Engineers.
Resumo:
Methods are presented for the production, affinity purification and analysis of plasmid DNA (pDNA). Batch fermentation is used for the production of the pDNA, and expanded bed chromatography, via the use of a dual affinity glutathione S-transferase (GST) fusion protein, is used for the capture and purification of the pDNA. The protein is composed of GST, which displays affinity for glutathione immobilized to a solid-phase adsorbent, fused to a zinc finger transcription factor, which displays affinity for a target 9-base pair sequence contained within the target pDNA. A Picogreen™ fluorescence assay and/or anx ethidium bromide agarose gel electrophoresis assay can be used to analyze the eluted pDNA.
Resumo:
Conventions of the studio presuppose the artist as the active agent, imposing his/her will upon and through objects that remain essentially inert. However, this characterisation of practice overlooks the complex object dynamics that underpin the art-making process. Far from passive entities, objects are resistant, ‘speaking back’ to the artist, impressing their will upon their surroundings. Objects stick to one another, fall over, drip, spill, spatter and chip one another. Objects support, dismantle, cover and transform one another. Objects are both the apparatus of the studio and its products. It can be argued that the work of art is as much shaped by objects as it is by human impulse. Within this alternate ontology, the artist becomes but one element in a constellation of objects. Drawing upon Graham Harman’s Object-Oriented Ontology and a selection of photographs of my studio processes, this practice-led paper will explore the notion of agentive objects and the ways in which the contemporary art studio can be reconsidered as a primary site for the production of new object relationships.
Resumo:
As news communication speeds up, investigative journalists have an increasing responsibility to minimise the risk of harm to vulnerable news sources. In addition, the increased longevity and instant global search-ability of news coverage and investigative journalism outputs such as documentaries, places upon journalists an increased responsibility for accuracy since online coverage cannot be easily corrected or retracted. This paper will examine how the risks to a news source and her family were considered and mitigated during the production of a radio documentary and newspaper story about an intended victim of child sacrifice. Pre-publication considerations included the possible risks to the mental health of the news source, the potential physical risk to her children and the risk to future family relationships. To hear the ABC Radio National documentary, A living sacrifice, on 360 Documentaries prior to the conference, see http://www.abc.net.au/radionational/programs/360/a-living-sacrifice/5359744. To read the Sunday Mail newspaper coverage of the story see http://www.couriermail.com.au/news/queensland/susannah-birch-talks-about-her-throat-being-slit-by-her-mother-when-she-was-a-baby/story-fnihsrf2-1226881911465.
Resumo:
Background The expression of biomass-degrading enzymes (such as cellobiohydrolases) in transgenic plants has the potential to reduce the costs of biomass saccharification by providing a source of enzymes to supplement commercial cellulase mixtures. Cellobiohydrolases are the main enzymes in commercial cellulase mixtures. In the present study, a cellobiohydrolase was expressed in transgenic corn stover leaf and assessed as an additive for two commercial cellulase mixtures for the saccharification of pretreated sugar cane bagasse obtained by different processes. Results Recombinant cellobiohydrolase in the senescent leaves of transgenic corn was extracted using a simple buffer with no concentration step. The extract significantly enhanced the performance of Celluclast 1.5 L (a commercial cellulase mixture) by up to fourfold on sugar cane bagasse pretreated at the pilot scale using a dilute sulfuric acid steam explosion process compared to the commercial cellulase mixture on its own. Also, the extracts were able to enhance the performance of Cellic CTec2 (a commercial cellulase mixture) up to fourfold on a range of residues from sugar cane bagasse pretreated at the laboratory (using acidified ethylene carbonate/ethylene glycol, 1-butyl-3-methylimidazolium chloride, and ball-milling) and pilot (dilute sodium hydroxide and glycerol/hydrochloric acid steam explosion) scales. We have demonstrated using tap water as a solvent (under conditions that mimic an industrial process) extraction of about 90% recombinant cellobiohydrolase from senescent, transgenic corn stover leaf that had minimal tissue disruption. Conclusions The accumulation of recombinant cellobiohydrolase in senescent, transgenic corn stover leaf is a viable strategy to reduce the saccharification cost associated with the production of fermentable sugars from pretreated biomass. We envisage an industrial-scale process in which transgenic plants provide both fibre and biomass-degrading enzymes for pretreatment and enzymatic hydrolysis, respectively.
Resumo:
Sugar cane biomass is one of the most viable feedstocks for the production of renewable fuels and chemicals. Therefore, processing the whole of crop (WC) (i.e., stalk and trash, instead of stalk only) will increase the amount of available biomass for this purpose. However, effective clarification of juice expressed from WC for raw sugar manufacture is a major challenge because of the amounts and types of non-sucrose impurities (e.g., polysaccharides, inorganics, proteins, etc.) present. Calcium phosphate flocs are important during sugar cane juice clarification because they are responsible for the removal of impurities. Therefore, to gain a better understanding of the role of calcium phosphate flocs during the juice clarification process,the effects of impurities on the physicochemical properties of calcium phosphate flocs were examined using small-angle laser light scattering technique, attenuated total reflectance Fourier transformed infrared spectroscopy, and X-ray powder diffraction. Results on synthetic sugar juice solutions showed that the presence of SiO2 and Na+ ions affected floc size and floc structure. Starch and phosphate ions did not affect the floc structure; however, the former reduced the floc size, whereas the latter increased the floc size. The study revealed that high levels of Na+ ions would negatively affect the clarification process the most, as they would reduce the amount of suspended particles trapped by the flocs. A complementary study on prepared WC juice using cold and cold/intermediate liming techniques was conducted. The study demonstrated that, in comparison to the one-stage (i.e., conventional) clarification process, a two-stage clarification process using cold liming removed more polysaccharides (≤19%),proteins (≤82%), phosphorus (≤53%), and SiO2 (≤23%) in WC juice but increased Ca2+ (≤136%) and sulfur (≤200%)
Resumo:
The process of spray drying is applied in a number of contexts. One such application is the production of a synthetic rock used for storage of nuclear waste. To establish a framework for a model of the spray drying process for this application, we here develop a model describing evaporation from droplets of pure water, such that the model may be extended to account for the presence of colloid within the droplet. We develop a spherically-symmetric model and formulate continuum equations describing mass, momentum, and energy balance in both the liquid and gas phases from first principles. We establish appropriate boundary conditions at the surface of the droplet, including a generalised Clapeyron equation that accurately describes the temperature at the surface of the droplet. To account for experiment design, we introduce a simplified platinum ball and wire model into the system using a thin wire problem. The resulting system of equations is transformed in order to simplify a finite volume solution scheme. The results from numerical simulation are compared with data collected for validation, and the sensitivity of the model to variations in key parameters, and to the use of Clausius–Clapeyron and generalised Clapeyron equations, is investigated. Good agreement is found between the model and experimental data, despite the simplicity of the platinum phase model.
Resumo:
Imatinib, a small-molecule inhibitor of the Bcr-Abl kinase, is a successful drug for treating chronic myeloid leukemia (CML). Bcr-Abl kinase stimulates the production of H2O2, which in turn activates Abl kinase. We therefore evaluated whether N-acetyl cysteine (NAC), a ROS scavenger improves imatinib efficacy. Effects of imatinib and NAC either alone or in combination were assessed on Bcr-Abl(+) cells to measure apoptosis. Role of nitric oxide (NO) in NAC-induced enhanced cytotoxicity was assessed using pharmacological inhibitors and siRNAs of nitric oxide synthase isoforms. We report that imatinib-induced apoptosis of imatinib-resistant and imatinib-sensitive Bcr-Abl(+) CML cell lines and primary cells from CML patients is significantly enhanced by co-treatment with NAC compared to imatinib treatment alone. In contrast, another ROS scavenger glutathione reversed imatinib-mediated killing. NAC-mediated enhanced killing correlated with cleavage of caspases, PARP and up-regulation and down regulation of pro- and anti-apoptotic family of proteins, respectively. Co-treatment with NAC leads to enhanced production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS). Involvement of eNOS dependent NO in NAC-mediated enhancement of imatinib-induced cell death was confirmed by nitric oxide synthase (NOS) specific pharmacological inhibitors and siRNAs. Indeed, NO donor sodium nitroprusside (SNP) also enhanced imatinib-mediated apoptosis of Bcr-Abl(+) cells. NAC enhances imatinib-induced apoptosis of Bcr-Abl(+) cells by endothelial nitric oxide synthase-mediated production of nitric oxide.
Resumo:
The present study discusses the theme of St. Petersburg-Leningrad in Joseph Brodsky's verse works. The chosen approach to the evolving im-age of the city in Brodsky's poetry is through four metaphors: St. Petersburg as "the common place" of the Petersburg Text, St. Petersburg as "Paradise and/or Hell", St. Petersburg as "a Utopian City" and St. Petersburg as "a Void". This examination of the city-image focusses on the aspects of space and time as basic categories underlying the poet's poetic world view. The method used is close reading, with an emphasis on semantical interpretation. The material consists of eighteen poems dating from 1958 to 1994. Apart from investigating the spatio-temporal features, the study focusses on exposing and analysing the allusions in the scrutinised works to other texts from Russian and Western belles lettres. Terminology (introduced by Bakhtin and Yury Lotman, among others) concerning the poetics of space in literature is employed in the present study. Conceptions originating from the paradigm of possible worlds are also used in elucidating the position of fictional and actual chronotopes and heroes in Brodsky's poetry. Brodsky's image of his native city is imbued with intertextual linkings. Through reminiscences of the "Divine Comedy" and Russian modernists, the city is paralleled with Dante's "lost and accursed" Florence, as well as with the lost St. Petersburg of Mandel'shtam and Akhmatova. His city-image is related to the Petersburg myth in Russian literature through their common themes of death and separation as well as through the merging of actual realia with the fictional worlds of the Petersburg Text. In his later poems, when his view of the city is that of an exiled poet, the city begins to lose its actual world referents, turning into a mental realm which is no longer connected to any particular geographical location or historical time. It is placed outside time. The native city as the homeland in its entirety is replaced by another existence created in language.
Resumo:
Highly productive sown pasture systems can result in high growth rates of beef cattle and lead to increases in soil nitrogen and the production of subsequent crops. The nitrogen dynamics and growth of grain sorghum following grazed annual legume leys or a grass pasture were investigated in a no-till system in the South Burnett district of Queensland. Two years of the tropical legumes Macrotyloma daltonii and Vigna trilobata (both self regenerating annual legumes) and Lablab purpureus (a resown annual legume) resulted in soil nitrate N (0-0.9 m depth), at sorghum sowing, ranging from 35 to 86 kg/ha compared with 4 kg/ha after pure grass pastures. Average grain sorghum production in the 4 cropping seasons following the grazed legume leys ranged from 2651 to 4012 kg/ha. Following the grass pasture, grain sorghum production in the first and second year was < 1900 kg/ha and by the third year grain yield was comparable to the legume systems. Simulation studies utilising the farming systems model APSIM indicated that the soil N and water dynamics following 2-year ley phases could be closely represented over 4 years and the prediction of sorghum growth during this time was reasonable. In simulated unfertilised sorghum crops grown from 1954 to 2004, grain yield did not exceed 1500 kg/ha in 50% of seasons following a grass pasture, while following 2-year legume leys, grain exceeded 3000 kg/ha in 80% of seasons. It was concluded that mixed farming systems that utilise short term legume-based pastures for beef production in rotation with crop production enterprises can be highly productive.
Resumo:
Proximal tubule epithelial cells (PTEC) of the kidney line the proximal tubule downstream of the glomerulus and play a major role in the re-absorption of small molecular weight proteins that may pass through the glomerular filtration process. In the perturbed disease state PTEC also contribute to the inflammatory disease process via both positive and negative mechanisms via the production of inflammatory cytokines which chemo-attract leukocytes and the subsequent down-modulation of these cells to prevent uncontrolled inflammatory responses. It is well established that dendritic cells are responsible for the initiation and direction of adaptive immune responses. Both resident and infiltrating dendritic cells are localised within the tubulointerstitium of the renal cortex, in close apposition to PTEC, in inflammatory disease states. We previously demonstrated that inflammatory PTEC are able to modulate autologous human dendritic cell phenotype and functional responses. Here we extend these findings to characterise the mechanisms of this PTEC immune-modulation using primary human PTEC and autologous monocyte-derived dendritic cells (MoDC) as the model system. We demonstrate that PTEC express three inhibitory molecules: (i) cell surface PD-L1 that induces MoDC expression of PD-L1; (ii) intracellular IDO that maintains the expression of MoDC CD14, drives the expression of CD80, PD-L1 and IL-10 by MoDC and inhibits T cell stimulatory capacity; and (iii) soluble HLA-G (sHLA-G) that inhibits HLA-DR and induces IL-10 expression by MoDC. Collectively the results demonstrate that primary human PTEC are able to modulate autologous DC phenotype and function via multiple complex pathways. Further dissection of these pathways is essential to target therapeutic strategies in the treatment of inflammatory kidney disorders.