988 resultados para Temperatures baixes
Resumo:
Three mid-Holocene sea surface temperature (SST) records spanning more than 30 years were reconstructed for the northern South China Sea using Sr/Ca ratios in Porites corals. The results indicate warmer than present climates between circa 6100 yr B.P. and circa 6500 yr B.P. with the mid-Holocene average minimum monthly winter SSTs, the average maximum monthly summer SSTs, and the average annual SSTs being about 0.5°-1.4°C, 0°-2.0°C, and 0.2°-1.5°C higher, respectively, than they were during 1970-1994. Summer SSTs decrease from circa 6500 yr B.P. to circa 6100 yr B.P. with a minimum centered at circa 6300 yr B.P. The higher average summer SSTs are consistent with a stronger summer monsoon during the mid-Holocene, and the decreasing trend indicates a secular decrease of summer monsoon strength, which reflects the change in summer insolation in the Northern Hemisphere. El Niño-Southern Oscillation (ENSO) cycles were apparent in both the mid-Holocene coral and modern instrumental records. However, the ENSO variability in the mid-Holocene SSTs was weaker than that in the modern record, and the SST record with the highest summer temperatures from circa 6460 yr B.P. to 6496 yr B.P. shows no robust ENSO cycle. This agrees with other studies that indicate that stronger summer monsoon circulation may have been associated with suppressed ENSO variability during the mid-Holocene.
Resumo:
We deployed autonomous temperature sensors at black smoker chimneys, cracks, and diffuse flow areas at the Lucky Strike hydrothermal field (Mid-Atlantic Ridge, ~37°17'N) between summer 2009 and summer 2012 and contemporaneously measured tidal pressures and currents as part of the long-term MoMAR experiment to monitor hydrothermal activity. We classify the temperature data according to the hydrogeologic setting of the measurement sites: a high-temperature regime (>190°C) representing discharge of essentially unmixed, primary hydrothermal fluids through chimneys, an intermediate-temperature regime (10-100°C) associated with mixing of primary fluids with cold pore fluids discharging through cracks, and a low-temperature regime (<10°C) associated with a thermal boundary layer forming over bacterial mats associated with diffuse outflow of warm fluids. Temperature records from all the regimes exhibit variations at semi-diurnal tidal periods, and cross-spectral analyses reveal that high-temperature discharge correlates to tidal pressure while low-temperature discharge correlates to tidal currents. Intermediate-temperature discharge exhibits a transitional behavior correlating to both tidal pressure and currents. Episodic perturbations, with transient temperature drops of up to ~150°C, which occur in the high-temperature and intermediate-temperature records, are not observed on multiple probes (including nearby probes at the same site), and they are not correlated with microearthquake activity, indicating that the perturbation mechanism is highly localized at the measurement sites within the hydrothermal structures. The average temperature at a given site may increase or decrease at annual time scales, but the average temperature of the hydrothermal field, as a whole, appears to be stable over our 3 year observation period.