973 resultados para TUMOR-SUPPRESSOR GENES
Resumo:
IκB kinase α (IKKα) is one kinase subunit of the IKK complex that is responsible for NF-κB activation. Previous studies have shown that IKKα determines mouse keratinocyte terminal differentiation independent of the NF-κB pathway. Accumulating evidence suggests that IKKα functions as a tumor suppressor in skin carcinogenesis; however, the downstream pathways mediating this function are largely unknown. By using primary cultured keratinocytes, we found that Ikkα-/- cells developed aneuploidy and underwent spontaneous immortalization and transformation while wild type cells underwent terminal differentiation in the same culture condition. Using proteomic analysis we identified nucleophosmin (NPM), a centrosome duplication regulator, as an IKKα substrate. We further demonstrated that IKKα interacted with NPM and colocalized with NPM on the centrosome, suggesting that NPM is a physiological substrate of IKKα. Loss of IKKα reduced centrosome-bound NPM and promoted abnormal centrosome amplification, which contributed to aneuploidy development. Detailed analysis revealed that ablation of IKKα target site serine-125 of NPM induced destabilization of NPM hexamers, disrupted NPM association with centrosomes, and resulted in abnormal centrosome amplification. Re-introduction of IKKα rescued the defect in Ikkα-/- keratinocytes. Thus, IKKα is required for maintaining proper centrosome duplication by phosphorylating NPM. ^ UV is the major etiological agent for human skin cancer and UV-induced mouse skin carcinogenesis is one of the most relevant experimental models for human skin carcinogenesis. Thus, we further evaluated IKKα function in UV-induced skin carcinogenesis in Ikkα+/- mice. We demonstrated that IKKα is also critical in UV skin carcinogenesis, as evidenced by increased tumor multiplicity and reduced tumor latency in Ikkα+/- mice after chronic UVB treatment. Reduced expression of IKKα decreased UV-induced apoptosis and promoted accumulation of P53 mutations in the epidermis. This indicates that IKKα is critical for UV-induced apoptosis in vivo and thus prevents mutation accumulation that is important for tumor development. ^ Together, these findings uncover previously unknown in vivo functions of IKKα in centrosome duplication and apoptosis, thus providing a possible mechanism of how loss of IKKα may contribute to skin carcinogenesis. ^
Resumo:
Programmed cell death is an anticancer mechanism utilized by p53 that when disrupted can accelerate tumor development in response to oncogenic stress. Defects in the RB tumor suppressor cause aberrant cell proliferation as well as apoptosis. The combinatorial loss of the p53 and RB pathways is observed in a large percentage of human tumors. The E2F family of transcription factors primarily mediates the phenotype of Rb loss, since RB is a negative regulator of E2F. Contrary to early expectations, it has now been shown that the ARF (alternative reading frame) tumor suppressor is not required for p53-dependent apoptosis in response to deregulation of the RB/E2F pathway. In this study, we demonstrate that ATM, known as a DNA double-strand break (DSB) sensor, is responsible for ARF-independent apoptosis and p53 activation induced by deregulated E2F1. Moreover, NBS1, a component of the MRN DNA repair complex, is also required for E2F1-induced apoptosis and apparently works in the same pathway as ATM. We further found that endogenous E2F1 and E2F3 both play a role in apoptosis and ATM activation in response to inhibition of RB by the adenoviral E1A oncoprotein. We demonstrate that, unlike deregulated E2F3 and Myc, ATM activation by deregulated E2F1 does not involve the induction of DNA damage, autophosphorylation of ATM on Ser 1981, a marker of ATM activation by DSB, but does depend on the presence of NBS1, suggesting that E2F1 activates ATM in a different manner from E2F3 and Myc. Results from domain mapping studies show that the DNA binding, dimerization, and marked box domains of E2F1 are required to activate ATM and stimulate apoptosis but the transactivation domain is not. This implies that E2F1's DNA binding and interaction with other proteins through the marked box domain are necessary to induce ATM activation leading to apoptosis but transcriptional activation by E2F1 is dispensable. Together these data suggest a model in which E2F1 activates ATM to phosphorylate p53 through a novel mechanism that is independent of DNA damage and transcriptional activation by E2F1.^
Resumo:
Breast cancer is the second most common farm of cancers and the second leading cause of cancer death for American women. Clinical studies indicate inflammation is a risk factor for breast cancer development. Among the cytokines and chemokines secreted by the infiltrating inflammatory cells, tumor necrosis factor a (TNFα) is considered one of the most important inflammatory factors involved in inflammation-mediated tumorigenesis. ^ Here we found that TNFα/IKKβ signaling pathway is able to increase tumor angiogenesis through activation of mTOR pathway. While investigating which molecule in the mTOR pathway involved in TNFα/IKKβ-mediated mTOR activation, our results showed that IKKβ physically interacts with and phosphorylates TSC1 at Ser487 and Ser511 in vitro and in vivo. Phosphorylation of TSC1 by IKKβ inhibits its association with TSC2, alters TSC2 membrane localization, and thereby activates mTOR. In vitro angiogenesis assays and orthotopic breast cancer model reveals that phosphorylation of TSC1 by IKKβ enhances VEGF expression, angiogenesis and culminates in tumorigenesis. Furthermore, expression of activated IKKβ is associated with TSC1 Ser511 phosphorylation and VEGF production in multiple tumor types and correlates with poor clinical outcome of breast cancer patients. ^ Furthermore, dysregulation of tumor suppressor FOXO3a contributes to the development of breast cancer. We found that overexpression of IKKβ led to inhibition of FOXO3a-mediated transactivation activity. While investigating the underlying mechanisms of IKKβ-mediated dysregulation of FOXO3a, our results showed that IKKβ physically associated with FOXO3a and phosphorylated FOXO3a at Ser644 in vitro and in vivo. The phosphorylation of FOXO3a by IKKβ altered its subcellular localization from nucleus to cytoplasm and promoted its degradation through ubiquitin-proteasome pathway. Mutation of FOXO3a at Ser644 prevented IKKβ-induced ubiquitination and degradation. In vitro cell proliferation assay and orthotopic breast cancer model revealed that phosphorylation of FOXO3a by IKKβ overrode FOXO3a-mediated repression of tumor progression. ^ In conclusion, our findings identify IKKβ-mediated suppressions of both TSC1 and FOXO3a are critical for inflammation-mediated breast cancer development through increasing tumor angiogenesis and evading apoptosis, respectively. Understanding the role of IKKβ in both FOXO3a and TSC/mTOR signaling pathways provides a critical insight of inflammation-mediated diseases and may provide a target for clinical intervention in human breast cancer. ^
Resumo:
Increased glycolysis and oxidative stress are common features of cancer cells. These metabolic alterations are associated with mitochondrial dysfunction and can be caused by mitochondrial DNA (mtDNA) mutations, oncogenic signals, loss of tumor suppressor, and tumor tissue hypoxia. It is well established that mitochondria play central roles in energy metabolism, maintenance of redox balance, and regulation of apoptosis. However, the biochemical and molecular mechanisms that maintain high glycolysis in cancer cells (the Warburg effect) with mitochondrial dysfunction and oxidative stress remain to be determined. The major goals of this study were to establish a unique experimental system in which the mitochondrial respiratory function can be regulated as desired, and to use this system to investigate the mechanistic link between mitochondrial dysfunction and the Warburg effect along with oxidative stress in cancer cells. To achieve these goals, I have established a tetracycline-inducible system in which a dominant negative form of mitochondrial DNA polymerase y (POLGdn) expression could be regulated by tetracycline; thus controlling mitochondrial respiratory function. Using this cell system, I demonstrated that POLGdn expression resulted in mitochondrial dysfunction through decreasing mtDNA content, depletion of mtDNA encoded mRNA and protein expression. This process was mediated by TFAM proteasome degradation. Mitochondrial dysfunction mediated by POLGdn expression led to a significant increase in cellular glycolysis and oxidative stress. Surprisingly, mitochondrial dysfunction also resulted in increased NAD(P)H oxidase (NOX) enzyme activity, which was shown to be essential for maintaining high glycolysis. Chemical Inhibition of NOX activity by diphenyliodonium (DPI) preferentially impacted the survival of mitochondrial defective cells. The colon cancer HCT116-/- cells that have lost transcriptional regulation of the mitochondrial assembling enzyme SCO2, leading to compromised mitochondrial respiratory function, were found to have increased NOX activity and were highly sensitive to DPI treatment. Ovarian epithelial cells with Ras transformation also exhibited an increase in NOX gene expression and NOX enzyme activity, rendering the cells sensitive to DPI inhibition especially under hypoxic condition. These data together suggest that NOX plays a novel role in maintaining high glycolysis in cancer cells with mitochondrial defects, and that NOX may be a potential target for cancer therapy. ^
Resumo:
In the endometrium, hormonal effects on epithelial cells are often elicited through stromal hormone receptors via unknown paracrine mechanisms. Several lines of evidence support the hypothesis that Wnts participate in stromal-epithelial cell communication and thus mediate hormone action. Characterization of specific Wnt signaling components in the endometrium was performed using cellular localization studies and evaluating hormone effects in a rat model. Wnt7a was expressed in the luminal epithelium, whereas the extracellular Wnt modulator, SFRP4, was localized to the endometrial stroma. SFRP4 expression is significantly decreased in endometrial carcinoma and aberrant Wnt7a signaling has been shown to cause uterine defects and contribute to the onset of disease. The specific Fzds and SFRPs that bind Wnt7a and the particular signal transduction pathway each Wnt7a-Fzd pair activates have not been identified. Additionally, the function of Wnt7a and SFRP4 in the endometrium has not been addressed. A survey of all Wnt signaling proteins expressed in the endometrium was conducted and Fzd5 and Fzd10 were identified as two receptors capable of transducing the Wnt7a signal. Biologically active recombinant Wnt7a and SFRP4 proteins were purified for quantitative biochemical studies. In Ishikawa cells, Wnt7a binding to Fzd5 activated β-catenin/canonical Wnt signaling and increased cellular proliferation. Wnt7a signaling mediated by Fzd10 induced a non-canonical/JNK-responsive pathway. SFRP4 suppressed Wnt7a action in both an autocrine and paracrine manner. Treatment with SFRP4 protein and overexpression of SFRP4 inhibited endometrial cancer cell growth and induced apoptosis in vitro. A split-eGFP complementation assay was developed to visually detect Wnt7a-Fzd interactions and subsequent pathway activation in cells. By employing a unique ELISA-based protein-protein binding technique, it was demonstrated that Wnt7a binds to SFRP4 and Fzd5 with equal nanomolar affinity. The development of these novel biological tools could lead to a better understanding of Wnt-protein interactions and the identification of new modulators of Wnt signaling. This study supports a mechanism by which the nature of the Wnt7a signal in the endometrium is dependent upon the Fzd repertoire of the cell and can be regulated by SFRP4. The potential tumor suppressor function of SFRP4 suggests it may serve as a therapeutic target for endometrial carcinoma. ^
Resumo:
Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and often leads to the development of cancer. In response to double stranded breaks (DSBs) as induced by ionizing radiation (IR), generated during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in T and B cells of lymphoid origin, the protein kinases ATM and ATR are central players that activate signaling pathways leading to DSB repair. p53 binding protein 1 (53BP1) participates in the repair of DNA double stranded breaks (DSBs) where it is recruited to or near sites of DNA damage. In addition to its well established role in DSB repair, multiple lines of evidence implicate 53BP1 in transcription which stem from its initial discovery as a p53 binding protein in a yeast two-hybrid screen. However, the mechanisms behind the role of 53BP1 in these processes are not well understood. ^ 53BP1 possesses several motifs that are likely important for its role in DSB repair including two BRCA1 C-terminal repeats, tandem Tudor domains, and a variety of phosphorylation sites. In addition to these motifs, we identified a glycine and arginine rich region (GAR) upstream of the Tudor domains, a sequence that is oftentimes serves as a site for protein arginine methylation. The focus of this project was to characterize the methylation of 53BP1 and to evaluate how methylation influenced the role of 53BP1 as a tumor suppressor. ^ Using a variety of biochemical techniques, we demonstrated that 53BP1 is methylated by the PRMT1 methyltransferase in vivo. Moreover, GAR methylation occurs on arginine residues in an asymmetric manner. We further show that sequences upstream of the Tudor domains that do not include the GAR stretch are sufficient for 53BP1 oligomerization in vivo. While investigating the role of arginine methylation in 53BP1 function, we discovered that 53BP1 associates with proteins of the general transcription apparatus as well as to other factors implicated in coordinating transcription with chromatin function. Collectively, these data support a role for 53BP1 in regulating transcription and provide insight into the possible mechanisms by which this occurs. ^
Resumo:
Cytochromes P450 catalyze a monooxygenase reaction in which molecular oxygen is split and one oxygen atom is incorporated into the substrate. As a whole, P450 researchers have focused most of their attention on substrate metabolism and relatively little on how these enzymes are regulated. This study will focus on the regulation of two P450 isoforms known as, CYP2D6 and CYP4F11. ^ The human CYP2D gene locus contains two pseudogenes and one functional gene known as CYP2D6. This locus is highly polymorphic and produces several alternatively spliced transcripts from the pseudogene CYP2D7. My objective was to understand the role of SV5-in (splice variant 5), one of several alternative splice variants transcribed from the CYP2D7 pseudogene. My results indicate that SV5-in mRNA causes an increase in CYP2D6 protein levels and suggest that there is a role for SV5-in in regulation of CYP2D6 expression. ^ Second, CYP4F11 is a recently discovered and uncharacterized isoform, derived from the CYP4F subfamily. It metabolizes several clinically relevant drugs (i.e.—erythromycin and benzphetamine) and some endogenous inflammatory mediators (i.e.—LTB4). After evaluation of microarray data, I observed an increase in CYP4F11 mRNA levels from wild-type HCT116 cells compared to p53-null cells. Our objectives were to explore and understand this connection between p53 and CYP4F11. Microarray data were confirmed by Q-PCR, after which this effect was again observed at the protein level via Western blot and again at the promoter level via luciferase assay and chromatin immunoprecipitation. Our results indicate that p53 protein regulates expression of CYP4F11 mRNA and protein through CYP4F11 promoter binding (note that p53 binding to CYP4F11 DNA was not shown to be direct). These results signify a whole new level of regulation of drug metabolizing enzymes by p53. ^ An understanding of CYP4F11 regulation by p53 could help us understand another pathway leading to apoptosis or cell growth arrest. This can aid future drug studies and discover new drug metabolism pathways under the control of a tumor suppressor protein. An understanding of the CYP2D6 regulation pathway could illuminate the role of non-coding RNAs in the P450 field and potentially explain several inter-individual drug response variations observed in clinical medicine that are not yet completely explained by genotyping analysis. ^
Resumo:
Li-Fraumeni syndrome (LFS) is characterized by a variety of neoplasms occurring at a young age with an apparent autosomal dominant transmission. Individuals in pedigrees with LFS have high incidence of second malignancies. Recently LFS has been found to be associated with germline mutations of a tumor-suppressor gene, p53. Because LFS is rare and indeed not a clear-cut disease, it is not known whether all cases of LFS are attributable to p53 germline mutations and how p53 plays in cancer occurrence in such cancer syndrome families. In the present study, DNAs from constitutive cells of two-hundred and thirty-three family members from ten extended pedigrees were screened for p53 mutations. Six out of the ten LFS families had germline mutations at the p53 locus, including point and deletion mutations. In these six families, 55 out of 146 members were carriers of p53 mutations. Except one, all mutations occurred in exons 5 to 8 (i.e., the "hot spot" region) of the p53 gene. The age-specific penetrance of cancer was estimated after the genotype for each family member at risk was determined. The penetrance was 0.15, 0.29, 0.35, 0.77, and 0.91 by 20, 30, 40, 50 and 60 year-old, respectively, in male carriers; 0.19, 0.44, 0.76, and 0.90 by 20, 30, 40, and 50 year-old, respectively, in female carriers. These results indicated that one cannot escape from tumorigenesis if one inherits a p53 mutant allele; at least ninety percent of p53 carriers will develop cancer by the age of 60. To evaluate the possible bias due to the unexamined blood-relatives in LFS families, I performed a simulation analysis in which a p53 genotype was assigned to each unexamined person based on his cancer status and liability to cancer. The results showed that the penetrance estimates were not biased by the unexamined relatives. I also determined the sex, site, and age-specific penetrance of breast cancer in female carriers and lung cancer in male carriers. The penetrance of breast cancer in female carriers was 0.81 by age 45; the penetrance of lung cancer in male carriers was 0.78 by age 60, indicating that p53 play a key role for tumorigenesis in common cancers. ^
Resumo:
Two molecular epidemiological studies were conducted to examine associations between genetic variation and risk of squamous cell carcinoma of the head and neck (SCCHN). In the first study, we hypothesized that genetic variation in p53 response elements (REs) may play roles in the etiology of SCCHN. We selected and genotyped five polymorphic p53 REs as well as a most frequently studied p53 codon 72 (Arg72Pro, rs1042522) polymorphism in 1,100 non-Hispanic White SCCHN patients and 1,122 age-and sex-matched cancer-free controls recruited at The University of Texas M. D. Anderson Cancer Center. In multivariate logistic regression analysis with adjustment for age, sex, smoking and drinking status, marital status and education level, we observed that the EOMES rs3806624 CC genotype had a significant effect of protection against SCCHN risk (adjusted odds ratio= 0.79, 95% confidence interval =0.64–0.98), compared with the -838TT+CT genotypes. Moreover, a significantly increased risk associated with the combined genotypes of p53 codon 72CC and EOMES -838TT+CT was observed, especially in the subgroup of non-oropharyneal cancer patients. The values of false-positive report probability were also calculated for significant findings. In the second study, we assessed the association between SCCHN risk and four potential regulatory single nucleotide polymorphisms (SNPs) of DEC1 (deleted in esophageal cancer 1) gene, a candidate tumor suppressor gene for esophageal cancer. After adjustment for age, sex, and smoking and drinking status, the variant -606CC (i.e., -249CC) homozygotes had a significantly reduced SCCHN risk (adjusted odds ratio = 0.71, 95% confidence interval = 0.52–0.99), compared with the -606TT homozygotes. Stratification analyses showed that a reduced risk associated with the -606CC genotype was more pronounced in subgroups of non-smokers, non-drinkers, younger subjects (defined as ≤ 57 years), carriers of TP53 Arg/Arg (rs1042522) genotype, patients with oropharyngeal cancer or late-stage SCCHN. Further in silico analysis revealed that the -249 T-to-C change led to a gain of a transcription factor binding site. Additional functional analysis showed that the -249T-to-C change significantly enhanced transcriptional activity of the DEC1 promoter and the DNA-protein binding activity. We conclude that the DEC1 promoter -249 T>C (rs2012775) polymorphism is functional, modulating susceptibility to SCCHN among non-Hispanic Whites. Additional large-scale, preferably population-based studies are needed to validate our findings.^
Resumo:
The inability to maintain genomic stability and control proliferation are hallmarks of many cancers, which become exacerbated in the presence of unrepaired DNA damage. Such genotoxic stresses trigger the p53 tumor suppressor network to activate transient cell cycle arrest allowing for DNA repair; if the damage is excessive or irreparable, apoptosis or cellular senescence is triggered. One of the major DNA repair pathway that mends DNA double strand breaks is non-homologous end joining (NHEJ). Abrogating the NHEJ pathway leads to an accumulation of DNA damage in the lymphoid system that triggers p53-mediated apoptosis; complete deletion of p53 in this system leads to aggressive lymphomagenesis. Therefore, to study the effect of p53-dependent cell cycle arrest, we utilized a hypomorphic, separation-of-function mutant, p53p/p, which completely abrogates apoptosis yet retains partial cell cycle arrest ability. We crossed DNA ligase IV deficiency, a downstream ligase crucial in mending breaks during NHEJ, into the p53p/p background (Lig4-/-p53p/p). The accumulation of DNA damage activated the p53/p21 axis to trigger cellular senescence in developing lymphoid cells, which absolutely suppressed tumorigenesis. Interestingly, these mice progressively succumb to severe diabetes. Mechanistic analysis revealed that spontaneous DNA damage accumulated in the pancreatic b-cells, a unique subset of endocrine cells solely responsible for insulin production to regulate glucose homeostasis. The genesis of adult b-cells predominantly occurs through self-replication, therefore modulating cellular proliferation is an essential component for renewal. The progressive accumulation of DNA damage, caused by Lig4-/-, activated p53/p21-dependent cellular senescence in mutant pancreatic b-cells that lead to islet involution. Insulin levels subsequently decreased, deregulating glucose homeostasis driving overt diabetes. Our Lig4-/-p53p/p model aptly depicts the dichotomous role of cellular senescence—in the lymphoid system prevents tumorigenesis yet in the endocrine system leads to the decrease of insulin-producing cells causing diabetes. To further delineate the function of NHEJ in pancreatic b-cells, we analyzed mice deficient in another component of the NHEJ pathway, Ku70. Although most notable for its role in DNA damage recognition and repair within the NHEJ pathway, Ku70 has NHEJ-independent functions in telomere maintenance, apoptosis, and transcriptional regulation/repression. To our surprise, Ku70-/-p53p/p mutant mice displayed a stark increase in b-cell proliferation, resulting in islet expansion, heightened insulin levels and hypoglycemia. Augmented b-cell proliferation was accompanied with the stabilization of the canonical Wnt pathway, responsible for this phenotype. Interestingly, the progressive onset of cellular senescence prevented islet tumorigenesis. This study highlights Ku70 as an important modulator in not only maintaining genomic stability through NHEJ-dependent functions, but also reveals a novel NHEJ-independent function through regulation of pancreatic b-cell proliferation. Taken in aggregate, these studies underscore the importance for NHEJ to maintain genomic stability in b-cells as well as introduces a novel regulator for pancreatic b-cell proliferation.
Resumo:
Adherens junctions (AJs) and basolateral modules are important for the establishment and maintenance of apico-basal polarity. Loss of AJs and basolateral module members lead to tumor formation, as well as poor prognosis for metastasis. Recently, in mammalian studies it has been shown that loss of either AJ or basolateral module members deregulate Yorkie activity, the downstream transcriptional effector of the Hippo pathway. Importantly, it is unclear if AJ and basolateral components act through the same or parallel mechanisms to regulate Yorkie activity. Here, we dissect how loss of AJ and basolateral components affects Hippo signaling in Drosophila. Surprisingly, while scrib knock-down tissue displays increased reporter activity autonomously, α-cat knock-down tissue shows a cell autonomous decrease and a cell non-autonomous increase of Hippo reporter activity. We provided several lines of evidence to show the differential regulation in polarity protein localizations and oncogenic cooperative overgrowth by AJs and basolateral complexes. Finally, we show that Hippo pathway activity is induced in α-cat and scrib double knocked-down tissue. Taken together, our results provide evidence to show that basolateral modules and AJs act in parallel to modulate Hippo pathway activity. Non-muscle myosin II is an actomyosin component that interacts with the actin. Non-muscle myosin II also interacts with lgl, though the function of this interaction is not clear. Our lab demonstrated that modulating F-actin regulates Hippo pathway activity, and lgl also has been described as a Hippo pathway regulator. Therefore we suspect that myosin II is also involved in Hippo pathway regulation. We first characterized non-muscle Myosin II as a novel tumor suppressor gene by affecting Hippo pathway activity. Upstream regulators of Myosin II, members in the Rho signaling pathway, also displayed similar phenotypes as the Myosin II knock-down tissues. Apoptosis is also induced in myosin II knock-down tissues, however, blocking cell death does not affect myosin II knock-down induced Hippo activation. Our data suggested hyperactivating myosin II induced F-actin accumulation so therefore induces Hippo target activation. Unexpectedly, we also observed that reducing F-actin activity induced Hippo target activation in vivo. These controversial data indicated that actomyosin may regulate the Hippo pathway through multiple mechanisms.
Resumo:
Tumor Suppressor Candidate 2 (TUSC2) is a novel tumor suppressor gene located in the human chromosome 3p21.3 region. TUSC2 mRNA transcripts could be detected on Northern blots in both normal lung and some lung cancer cell lines, but no endogenous TUSC2 protein could be detected in a majority of lung cancer cell lines. Mechanisms regulating TUSC2 protein expression and its inactivation in primary lung cancer cells are largely unknown. We investigated the role of the 5’- and 3’-untranslated regions (UTRs) of the TUSC2 gene in the regulation of TUSC2 protein expression. We found that two small upstream open-reading frames (uORFs) in the 5’UTR of TUSC2 could markedly inhibit the translational initiation of TUSC2 protein by interfering with the “scanning” of the ribosome initiation complexes. Site-specific stem-loop array reverse transcription-polymerase chain reaction (SLA-RT-PCR) verified several micoRNAs (miRNAs) targeted at 3’UTR and directed TUSC2 cleavage and degradation. In addition, we used the established let-7-targeted high mobility group A2 (Hmga2) mRNA as a model system to study the mechanism of regulation of target mRNA by miRNAs in mammalian cells under physiological conditions. There have been no evidence of direct link between mRNA downregulation and mRNA cleavages mediated by miRNAs. Here we showed that the endonucleolytic cleavages on mRNAs were initiated by mammalian miRNA in seed pairing style. Let-7 directed cleavage activities among the eight predicted potential target sites have varied efficiency, which are influenced by the positional and the structural contexts in the UTR. The 5’ cleaved RNA fragments were mostly oligouridylated at their 3’-termini and accumulated for delayed 5’–3’ degradation. RNA fragment oligouridylation played important roles in marking RNA fragments for delayed bulk degradation and in converting RNA degradation mode from 3’–5’ to 5’–3’ with cooperative efforts from both endonucleolytic and non-catalytic miRNA-induced silencing complex (miRISC). Our findings point to a mammalian miRNA-mediated mechanism for the regulation of mRNA that miRNA can decrease target mRNA through target mRNA cleavage and uridine addition
Resumo:
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the United Statesand Europe. CLL patients with deletion of chromosome 17p, where the tumor suppressor p53 gene is located, often develop a more aggressive disease with poor clinical outcomes. However, the underlying mechanism remains unclear. In order to understand the underneath mechanism in vivo, I have recently generated mice with Eu-TCL1-Tg:p53-/- genotype and showed that these mice develop aggressive leukemia that resembles human CLL with 17p deletion. The Eu-TCL1-Tg:p53-/- mice developed CLL disease at 3-4 months, significantly earlier than the parental Eu-TCL1-Tg mice that developed CLL disease at 8-12 months. Flow cytometry analysis showed that the CD5+/ IgM+ cell population appeared in the peritoneal cavity, bone marrow, and the spleens of Eu-TCL1-Tg:p53-/- mice significantly earlier than that of the parental Eu-TCL1-Tg mice. Massive infiltration and accumulation of leukemia cells were found in the spleen and peritoneal cavity. In vitro study showed that the leukemia cells isolated from the Eu-TCL1-Tg:p53-/- mice were more resistant to fludarabine treatment than the leukemia cells isolated from spleens of Eu-TCL1-Tg mice. Interestingly, TUNEL assay revealed that there was higher apoptotic cell death found in the Eu-TCL1-Tg spleen tissue compared to the spleens of the Eu-TCL1-Tg:p53-/- mice, suggesting that the loss of p53 compromises the apoptotic process in vivo, and this might in part explain the drug resistant phenotype of CLL cells with 17p-deletion. In the present study, we further demonstrated that the p53 deficiency in the TCL1 transgenic mice resulted in significant down-regulation of microRNAs miR-15a and miR16-1, associated with a substantial up-regulation of Mcl-1, suggesting that the p53-miR15a/16-Mcl-1 axis may play an important role in CLL pathogenesis. Interestingly, we also found that loss of p53 resulted in a significant decrease in expression of the miR-30 family especially miR-30d in leukemia lymphocytes from the Eu-TCL1-Tg:p53-/- mice. Such down-regulation of those microRNAs and up-regulation of Mcl-1 were also found in primary leukemia cells from CLL patients with 17p deletion. To further exam the biological significance of decrease in the miR-30 family in CLL, we investigated the potential involvement of EZH2 (enhancer of zeste homolog 2), a component of the Polycomb repressive complex known to be a downstream target of miR-30d and plays a role in disease progression in several solid cancers. RT-PCR and western blot analyses showed that both EZH2 mRNA transcript and protein levels were significantly increased in the lymphocytes of Eu-TCL1-Tg:p53-/- mice relative to Eu-TCL1-Tg mice. Exposure of leukemia cells isolated from Eu-TCL1-Tg:p53-/- mice to the EZH2 inhibitor 3-deazaneplanocin (DZNep) led to induction of apoptosis, suggesting EZH2 may play a role in promoting CLL cell survival and this may contribute to the aggressive phenotype of CLL with loss of p53. Our study has created a novel CLL mouse model, and suggests that the p53/miR15a/16-Mcl-1 axis & p53/miR30d-EZH2 may contribute to the aggressive phenotype and drug resistance in CLL cells with loss of p53.
Resumo:
p53 is a tumor suppressor gene that is the most frequent target inactivated in cancers. Overexpression of wild-type p53 in rat embryo fibroblasts suppresses foci formation by other cooperating oncogenes. Introduction of wild-type p53 into cells that lack p53 arrests them at the G1/S boundary and reverses the transformed phenotype of some cells. The function of p53 in normal cells is illustrated by the ability of p53 to arrest cells at G1 phase of the cell cycle upon exposure to DNA-damaging agents including UV-irradiation and biosynthesis inhibitors.^ Since the amino acid sequence of p53 suggested that it may function as a transcription factor, we used GAL4 fusion assays to test that possibility. We found that wild-type p53 could specifically activate transcription when anchored by the GAL4 DNA binding domain. Mutant p53s, which have lost the ability to suppress foci formation by other oncogenes, were not able to activate transcription in this assay. Thus, we established a direct correlation between the tumor suppression and transactivation functions of p53.^ Having learned that p53 was a transcriptional activator, we next sought targets of p53 activation. Because many transcription factors regulate their own expression, we tested whether p53 had this autoregulatory property. Transient expression of wild-type p53 in cells increased the levels of endogenous p53 mRNA. Cotransfection of p53 together with a reporter bearing the p53 promoter confirmed that wild-type p53 specifically activates its own promoter. Deletion analysis from both the 5$\sp\prime$ and 3$\sp\prime$ ends of the promoter minimized the region responsible for p53 autoregulation to 45 bp. Methylation interference identified nucleotides involved in protein-DNA interaction. Mutations within this protected site specifically eliminated the response of the promoter to p53. In addition, multiple copies of this element confer responsiveness to wild-type p53 expression. Thus, we identified a F53 responsive element within the p53 promoter.^ The presence of a consensus NF-$\kappa$B site in the p53 promoter suggested that NF-KB may regulate p53 expression. Gel-shift experiments showed that both the p50 homodimer and the p50/p65 heterodimer bind to the p53 promoter. In addition, the p65 subunit of NF-$\kappa$B activates the p53 promoter in transient transfection experiments. TNF $\alpha$, a natural NF-$\kappa$B inducer, also activates the p53 promoter. Both p65 activation and TNF $\alpha$ induction require an intact NF-$\kappa$B site in the p53 promoter. Since NF-$\kappa$B activation occurs as a response to stress and p53 arrests cells in G1/S, where DNA repair occurs, activation of p53 by NF-$\kappa$B could be a mechanism by which cells recover from stress.^ In conclusion, we provided the first data that wild-type p53 functions as a transcriptional activator, whereas mutant p53 cannot. The correlation between growth suppression and transcriptional activation by p53 implies a pathway of tumor suppression. We have analyzed upstream components of the pathway by the identification of both p53 and NF-$\kappa$B as regulators of the p53 promoter. ^
Resumo:
The tumor suppressor p53 is a phosphoprotein which functions as a transcriptional activator. By monitoring the transcriptional activity, we studied how p53 functions is regulated in relation to cell growth and contact inhibition. When cells were arrested at G1 phase of the cell cycle by contact inhibition, we found that p53 transactivation function was suppressed. When contact inhibition was overridden by cyclin E overexpression which stimulates cell cycle progression, p53 function was restored. This observation led to the development of a cell density assay to study the regulation of p53 function during cell cycle for the functional significance of p53 phosphorylation. The murine p53 is phosphorylated at serines 7, 9, 12, 18, 37, 312 and 389. To understand the role of p53 phosphorylation, we generated p53 constructs encoding serine-to-alanine or serine-to-glutamate mutations at these codons. The transcriptional activity were measured in cells capable of contact inhibition. In low-density cycling cells, no difference in transcriptional activity was found between wild type p53 and any of the mutants. In contact-inhibited cells, however, only mutations of p53 at serine 389 resulted in altered responses to cell cycle arrest and to cyclin E overexpression. The mutant with serine-to-glutamate substitution at codon 389 retained its function in contact inhibited cells. Cyclin E overexpression in these cells induced p53 phosphorylation at serine 389. Furthermore, we showed that phosphorylation at serine 389 regulates p53 DNA binding activity. Our findings implicate that phosphorylation is an important mechanism for p53 activation.^ p53 is the most frequently mutated gene in human tumors. To study the mechanism of p53 inactivation by mutations, we carried out detailed analysis of a murine p53 mutation with an arginine-to-tryptophane substitution at codon 245. The corresponding human p53 mutation at amino acid 248 is the most frequently mutated codon in tumors. We showed that this mutant is inactive in suppressing focus formation, binding to DNA and transactivation. Structural analysis revealed that this mutant assumes the wild type protein conformation. These findings define a novel class of p53 mutations and help to understand structure-function relationship of p53. ^