924 resultados para TRANSPARENT ELECTRODES
Resumo:
Frequency upconversion luminescence in erbium-doped PbGeO3-PbF2-CdF2-based transparent glass ceramics (TGC) under 980 nm infrared excitation is investigated. Upconversion emission signals around 410, 525, 550, 660, and 850 nm were generated and identified as due to the H-2(9/2) H-2(11/2), S-4(3/2), and F-4(9/2) transitions to the I-4(15/2) ground-state, and S-4(3/2)-I-4(13/2), respectively. The erbium ions excited-state emitting levels were populated via a combination of stepwise ground-state absorption (GSA), excited-state absorption (ESA), and cross-relaxation processes. The results also disclosed that both blue (410 nm) and red (660 nm) upconversion emission signals in the transparent glass ceramic sample presented twice as much intensity as compared to its vitreous counterpart. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Tin oxide nanoparticles prepared by an aqueous sol-gel method were deposited by dip-coating on fluorozirconate glass, ZBLAN (53%ZrF4-20%BaF2-4%LaF3-3%AlF3-20%NaF) to improve its resistance against wet corrosion. The aqueous leaching of uncoated and SnO2-coated fluorozirconate glass was studied by X-ray photoemission spectroscopy (XPS) and it was shown that even an ultra thin tin dioxide film provides good protection of the glass surface against the bulk propagation of the hydrolytic attack.
Resumo:
The electrochemical behaviour of tin in de-aerated sodium perchlorate was studied using potentiodynamic and potentiostatic techniques. Tin behaviour in sodium perchlorate has been complicated unexpectedly by the reduction of the perchlorate anion. It is shown that the reduction process takes place within a potential region comprising the negative side of the double layer region and the positive side of the hydrogen region (-0.7 less than or equal to E less than or equal to -1.3 V). The presence of oxide on the electrode surface favours the reduction reaction, which may occur in two steps: the formation of basic tin(II) chloride followed by its reduction, producing chloride.
Resumo:
Mercury thin films prepared by electrochemical deposition on Pt-Ir alloy and after partial removing of mercury at different temperatures were studied by means of an interferometric surface mapping microscope and by X-ray photoelectronic spectroscopy. Mercury film samples having mercury partially removed by anodic stripping at a potential more positive than the corresponding peak in the voltammogram were also studied using the same techniques. For blank samples the surface topographic studies showed well defined grain boundaries. Mercury film samples when heated up to different temperatures showed as material is removed and that the surface roughness decreases as the temperature increases. For samples heated up to 800 degrees C the surface roughness is approximately the same that for the blank. A model for the interphase of volumetric mercury electrodeposited on a Pt-Ir alloy has been proposed using samples both electrochemically and thermally removed of their Hg coatings. The model includes a layered three-region structure, containing at least two Pt-Hg intermetallics: PtHg4 and PtHg2. A substrate modified region, iridium rich, has also been detected. (C) 1999 Elsevier B.V. S.A. All rights reserved.
Resumo:
This paper presents a new model for the representation of electrodes' filaments of hot-cathode fluorescent lamps, during preheating processes based on the injection of currents with constant root mean square (rms) values. The main improvement obtained with this model is the prediction of the R-h/R-c ratio during the preheating process, as a function of the preheating time and of the rms current injected in the electrodes. Using the proposed model, it is possible to obtain an estimate of the time interval and the current that should be provided by the electronic ballast, in order to ensure a suitable preheating process. is estimate of time and current can be used as input data in the design of electronic ballasts with programmed lamp start, permitting the prediction of the R-h/R-c ratio during the initial steps of the design (theoretical analysis and digital simulation). Therefore, the use of the proposed model permits to reduce the necessity of several empirical adjustments in the prototype, in order to set the operation of electronic ballasts during the preheating process. This fact reduces time and costs associated to the global design procedure of electronic ballasts.
Resumo:
Cromoglycate is accumulated on a poly-L-lysine (PLL) modified carbon electrode best from pH 4 solution, where it is anionic and the PLL is cationic, and at which pH the cromoglycate gives a good reduction peak at -0.82 V. The PLL film can be regenerated readily by washing the electrode with 3 M sodium hydroxide solution, in which the PLL is deprotonated. Regeneration of the film is not required as frequently when larger amounts of PLL are incorporated into it. This allows standard addition procedures to be carried out without regenerating the electrode. Linear calibration graphs have been obtained typically in the range 0.1 - 1.5 mug ml(-1). Detection limits have been calculated to be 10 ng ml(-1). The standard addition method has been applied satisfactorily to diluted urine solutions. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
A film of poly-L-lysine (PLL) adheres better to the surface of a glassy carbon electrode when the PLL is partially cross-linked by means of glutaraldehyde. A film composition of 97.5% PLL/2.5% glutaraldehyde gives good adhesion and retains the anionic exchange capability of the PLL. The performance of the film was tested with hexacyanoferrate(III) using electrochemical and nonelectrochemical accumulation.
Resumo:
This paper proposes a simple methodology for mercury quantification in natural water by stripping chronopotentiometry at constant current, using gold (film) electrodes constructed from recordable CDs in stationary cell. The proposed method allows the direct measurement of labile mercury in natural waters. To quantify total mercury, a robust and low cost UV irradiation system was developed for the degradation of organic constituents of water. The proposed system presents such advantages as excellent sensitivity, low cost, versatility, and smaller dimensions (portability for on-field applications) when compared with other techniques (ICP, GFAAS, fluorimetry) traditionally utilized for mercury quantification. A large linear region of responses was observed, situated over the range 0.02 - 200 μ g L-1. Various experimental parameters were optimized and the system allowed quantifications in natural samples, with detection limit of 8 ng L-1 and excellent reproducibility (RSD of 1.4% for 48 repetitive measurements using a 10 μ g L-1 mercury solution). Different metal ions were evaluated, including copper, as possible interferences on stripping mercury signals. Applications of the new method were demonstrated for the analysis of certified and groundwater samples spiked with a known amount of mercury and for the quantification of methylmercury in synthetic oceanic water, originally utilized for fishes contamination experiment.
Resumo:
Aluminum doped zinc oxide polycrystalline thin films (AZO) were prepared by sol-gel dip-coating process. The sol was prepared from an ethanolic solution of zinc acetate using lithium hydroxide or succinic acid as hydrolytic catalyst. The quantity of aluminum in the sol was varied from 1 to 10 mol%. The structural characteristics studied by X-ray diffractometry were complemented by resistivity measurements and UV-Vis-NIR spectroscopy. The films are transparent from the near ultraviolet to the near infrared, presenting an absorption cut-off at almost 290 nm, irrespective of the nature of the catalyst and doping level. The best conductors were obtained for the AZO films containing 3 mol% of aluminum, prepared under acidic and basic catalysis and sintered at 450 degreesC. Their optical band-gap of 4.4 eV calculated from the absorption cut-off is larger than the values for band-gap widening predicted by the standard model for polar semiconductors. These polycrystalline films are textured with preferential orientation of grains along the wurtzite c-axis or the (100) direction. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Pt-modified SnO2 electrodes were prepared onto titanium substrates in the form of thin films of similar to2 mum at different temperatures in the range from 200 to 400degreesC. Surface morphology was examined by scanning electron microscopy (SEM). It was found that Pt-SnO2 sol-gel layers are significantly rough and have a low porosity. X-ray diffraction (XRD) studies showed that the films consist of Pt nanoparticles with average size varying from about 5 to 10 nm, depending on the preparation temperature, and amorphous tin oxide. X-ray photoelectron spectroscopy (XPS) was employed to determine the superficial composition of the electrodes and demonstrated the presence of Sn4+ in all the samples. XPS spectra of the Pt 4f electrons showed the presence of Pt in the zero-valence state as well as in ionic forms. The general electrochemical behavior was characterized by cyclic voltammetry in 1 mol l(-1) HClO4 and the electrocatalytic activity towards the oxidation of formaldehyde was investigated by potential sweeps and chronoamperometry. The results obtained show that the Pt-SnO2/Ti system exhibits a significant catalytic activity for the oxidation of formaldehyde, with an onset potential below 0.1 V. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the influence on optical properties of alkali halides such as CsCl in a covalent glassy matrix has been investigated. Chalcogenide glasses belonging to the (GeS2)-(Ga2S3)-CsCI system with high ratio of CsCl present an entire transparency in the visible range. These glasses maintain good transmission up to 12 mu m. Furthermore, the thermo-mechanical properties and the glass hygroscopicity have been investigated as function of the CsCl amount. This new generation of glasses presents a great interest for optical application. They could be used both for passive applications (multi-spectral imaging) and active applications for rare-earth doping due to their good transmission in the visible range, increasing optical pumping possibilities.
Resumo:
Eu3+ and Tm3+ doped lanthanum fluoride and lanthanum oxyfluoride are obtained from Eu3+, Tm3+ containing lanthanum fluoracetate solutions. The nature of the crystal phase obtained could be controlled by the temperature of heat treatment. Spectral characteristics of Eu3+ doped crystal phases were sufficiently different to allow utilization of Eu3+ as structural probes. Tm3+ emission at the technologically important spectral region of 1450nm could be observed for the fluoride and oxyfluoride crystal phases. The large bandwidth obtained (around 120nm) suggests potential applications in optical amplification. SiO2-LaF3-LaOF composite materials were also prepared. It is observed that for heat treatments above 800degreesC, fluorine loss, probably in the form of SiF4 hinder the observation of Tm3+ emission. Eu3+ spectroscopic characteristics clearly show the evolution of a fluoride like environment to an amorphous oxide one as the temperature of heat treatment increased. Thin films obtained by dip-coating on V-SiO2 substrates and treated at 300degreesC, 500degreesC and 800degreesC display guided modes in the visible and infrared regions. Optical characteristics (refractive index and films thickness) were obtained at 543.5, 632.8 and 1550nm. Attenuation as low as 1.8dB/cm was measured at 632.8nm. (C) 2004 Published by Elsevier B.V.
Resumo:
Hydrogen evolution reaction was studied on Ni-Zn (25% of Ni before leaching) in 1 M NaOH at 25 degrees C. These electrodes were characterized by very low Tafel slopes of 67 mV dec(-1). Other techniques used included potential and current pulse, potential relaxation in an open circuit, and ac impedance spectroscopy. Analysis of the experimental results led to the conclusion that hydrogen adsorption in the surface layers was responsible for the observed behavior. Influence of the oxidation of the electrode surface and the addition of poisons, thiourea and cyanides, were also studied. These processes inhibit the hydrogen absorption and restore ''normal'' Tafel slopes. Kinetic parameters of the hydrogen evolution reaction were determined.
Resumo:
The electrochemical oxidation of cyanide in alkaline media was studied at different pH levels on SnO2 doped with Sb supported on titanium, at 25 degrees C, the electrooxidation of CN- at constant current follows a first-order rate law with a half life of t(1/2) = 35 min on SnO2-SbOx electrodes and t(1/2) = 69 min on SnO2-SbOx-RuO2 electrodes, in K2SO4(aq), pH 12, the reaction rate increases with the applied current and tends to reach a plateau when j > 20 mA cm(-2), In the pH range 10-13.5 the reaction rate diminishes as pH is increased owing to an increasing competition between CN- and OH- ions for the electrode surface. Addition of chloride to the solution does not alter the rate law but increases the reaction rate, A mechanism is proposed to explain the observed behaviour.
Resumo:
Substantial improvements in the selectivity of electrochemical measurements of trace nucleic adds are obtained by using membrane-covered carbon disk electrodes. Access to the electrode surface can be manipulated via a judicious choice of the membrane molecular weight cutoff (MWCO). The resulting separation step, performed in situ at the electrode surface, adds a new dimension of selectivity based on molecular size to electroanalysis of nucleic acids, Transport properties are evaluated with respect to the oligonucleotide length and membrane MWCO. A highly selective response is observed for synthetic oligonucleotides in the presence of otherwise interfering chromosomal DNAs. Discrimination among oligonucleotides of different lengths is also possible, Short accumulation periods (1-5 min) are sufficient for convenient measurements of low milligram per liter concentrations.