950 resultados para TK Electrical engineering. Electronics Nuclear engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This comment points out an inaccurate formula relating the signal correlation coefficient to the mutual impedance and corrects it. © 2005 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a method for power system modeling during the earth fault. The possibility of using this method for selection and adjustment of earth fault protection is pointed out. The paper also contains the comparison of results achieved by simulation with the experimental measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self-matched printed hemispherical helical antenna for potential use in global positioning system receivers is introduced. Unlike wired hemispherical helical antennas, its printed form renders it a much more stable and endurable structure and also easier for fabrication. The optimized antenna shows an impedance bandwidth of 6%, a 3-dB axial ratio bandwidth of 6%-7%, a return loss greater than 20 dB, and a gain of about 9 dB at the center frequency. The patterns of the antenna show a larger mainlobe in the upper half space with relatively small backlobes. Both theoretical and experimental results will be presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuzzy data has grown to be an important factor in data mining. Whenever uncertainty exists, simulation can be used as a model. Simulation is very flexible, although it can involve significant levels of computation. This article discusses fuzzy decision-making using the grey related analysis method. Fuzzy models are expected to better reflect decision-making uncertainty, at some cost in accuracy relative to crisp models. Monte Carlo simulation is used to incorporate experimental levels of uncertainty into the data and to measure the impact of fuzzy decision tree models using categorical data. Results are compared with decision tree models based on crisp continuous data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Document classification is a supervised machine learning process, where predefined category labels are assigned to documents based on the hypothesis derived from training set of labelled documents. Documents cannot be directly interpreted by a computer system unless they have been modelled as a collection of computable features. Rogati and Yang [M. Rogati and Y. Yang, Resource selection for domain-specific cross-lingual IR, in SIGIR 2004: Proceedings of the 27th annual international conference on Research and Development in Information Retrieval, ACM Press, Sheffied: United Kingdom, pp. 154-161.] pointed out that the effectiveness of document classification system may vary in different domains. This implies that the quality of document model contributes to the effectiveness of document classification. Conventionally, model evaluation is accomplished by comparing the effectiveness scores of classifiers on model candidates. However, this kind of evaluation methods may encounter either under-fitting or over-fitting problems, because the effectiveness scores are restricted by the learning capacities of classifiers. We propose a model fitness evaluation method to determine whether a model is sufficient to distinguish positive and negative instances while still competent to provide satisfactory effectiveness with a small feature subset. Our experiments demonstrated how the fitness of models are assessed. The results of our work contribute to the researches of feature selection, dimensionality reduction and document classification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The worldwide trend for the deregulation of the electricity generation and transmission industries has led to dramatic changes in system operation and planning procedures. The optimum approach to transmission-expansion planning in a deregulated environment is an open problem especially when the responsibilities of the organisations carrying out the planning work need to be addressed. To date there is a consensus that the system operator and network manager perform the expansion planning work in a centralised way. However, with an increasing input from the electricity market, the objectives, constraints and approaches toward transmission planning should be carefully designed to ensure system reliability as well as meeting the market requirements. A market-oriented approach for transmission planning in a deregulated environment is proposed. Case studies using the IEEE 14-bus system and the Australian national electricity market grid are performed. In addition, the proposed method is compared with a traditional planning method to further verify its effectiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we propose a framework, namely, Prediction-Learning-Distillation (PLD) for interactive document classification and distilling misclassified documents. Whenever a user points out misclassified documents, the PLD learns from the mistakes and identifies the same mistakes from all other classified documents. The PLD then enforces this learning for future classifications. If the classifier fails to accept relevant documents or reject irrelevant documents on certain categories, then PLD will assign those documents as new positive/negative training instances. The classifier can then strengthen its weakness by learning from these new training instances. Our experiments’ results have demonstrated that the proposed algorithm can learn from user-identified misclassified documents, and then distil the rest successfully.

Relevância:

100.00% 100.00%

Publicador: