973 resultados para THERMOPHILIC FUNGUS
Resumo:
Trichoderma aggressivum f. aggressivum is a filamentous soil fungus. Green mold disease of commercial mushrooms caused by this species in North America has resulted in millions of dollars in lost revenue within the mushroom growing industry. Research on the molecular level of T aggressivum have jus t begun with the goal of understanding the functions of each gene and protein, and their expression control. Protein targeting has not been well studied in this species yet. Therefore, the intent of this study was to test the protein localization and production levels in T aggressivum with green fluorescent protein (GFP) with an intron and tagged with either nuclear localization signal (NLS) or an endoplasmic reticulum retention signal (KDEL). Two GFP constructs (with and without the intron) were used as controls in this study. All four constructs were successfully transferred into T aggressivum and all modified strains showed similar growth characteristics as the wild type non-transformed isolate. GFP expression was detected from all modified T aggressivum with confocal microscopy and the expression was similar in all four strains. The intron tested in this study had no or very minor effects as GFP expression was similar with or without it. The GFP signal increased over a 5 day period for all transformants, while the GFP to total protein ratio decreased over the same period for all transformants. The GFP-KDEL transformant showed similar protein expression level and localization as did the control transformant lacking the KDEL retention signal. The GFP-NLS transformant similarly failed to localize GFP into nucleus as fluorescence with this strain was virtually identical to the GFP transformant lacking the NLS. Thus, future research is required to find effective localization signals for T aggressivum.
Resumo:
The soil-inhabiting insect-pathogenic fungus Metarhizium robertsii also colonizes plant roots endophytically, thus showing potential as a plant symbiont. M robertsii is not randomly distributed in soils but preferentially associates with the plant rhizosphere when applied in agricultural settings. Root surface and endophytic colonization of switchgrass (Panicum virgatum) and haricot beans (Phaseolus vulgaris) by M robertsii were examined after inoculation with fungal conidia. Light and confocal microscopies were used to ascertain this rhizosphere association. Root lengths, root hair density and emergence of lateral roots were also measured. Initially, M robertsii conidia adhered to, germinated on, and colonized, roots. Furthermore, plant roots treated with Metarhizium grew faster and the density of plant root hairs increased when compared with control plants. The onset of plant root hair proliferation was initiated before germination of M robertsii on the root (within 1-2 days). Plants inoculated with M robertsii AMAD2 (plant adhesin gene) took significantly longer to show root hair proliferation than the wild type. Cell free extracts of M robertsii did not stimulate root hair proliferation. Longer term (60 days) associations showed that M robertsii endophytically colonized individual cortical cells within bean roots. Metarhizium appeared as an amorphous mycelial aggregate within root cortical cells as well as between the intercellular spaces with no apparent damage to the plant. These results suggested that not only is M robertsii rhizosphere competent but displays a beneficial endophytic association with plant roots that results in the proliferation of root hairs. The biocontrol of bean (Phaseolis vulgaris) root rot fungus Fusarium solani f. sp. phaseolis by Metarhizium robertsii was investigated in vitro and in vivo. Dual cultures on Petri dishes showed antagonism of M robertsii against F. solani. A relative inhibition of ca. 60% of F. solani growth was observed in these assays. Cell free culture filtrates of M robertsii inhibited the germination of F. solani conidia by 83% and the inhibitory metabolite was heat stable. Beans plants colonized by M robertsii then exposed to F. solani showed healthier plant profiles and lower disease indices compared to plants not colonized by M robertsii. These results suggested that the insect pathogenic/endophytic fungus M robertsii could also be utilized as a biocontrol agent against certain plant pathogens occurring in the rhizosphere.
Resumo:
Metarhizium is a soil-inhabiting fungus currently used as a biological control agent against various insect species, and research efforts are typically focused on its ability to kill insects. In section 1, we tested the hypothesis that species of Metarhizium are not randomly distributed in soils but show plant rhizosphere-specific associations. Results indicated an association of three Metarhizium species (Metarhizium robertsii, M. brunneum and M. guizhouense) with the rhizosphere of certain types of plant species. M. robertsii was the only species that was found associated with grass roots, suggesting a possible exclusion of M. brunneum and M. guizhouense, which was supported by in vitro experiments with grass root exudate. M. guizhouense and M. brunneum only associated with wildflower rhizosphere when co-occurring with M. robertsii. With the exception of these co-occurrences, M. guizhouense was found to associate exclusively with the rhizosphere of tree species, while M. brunneum was found to associate exclusively with the rhizosphere of shrubs and trees. These associations demonstrate that different species of Metarhizium associate with specific plant types. In section 2, we explored the variation in the insect adhesin, Madl, and the plant adhesin, Mad2, in fourteen isolates of Metarhizium representing seven different species. Analysis of the transcriptional elements within the Mad2 promoter region revealed variable STRE, PDS, degenerative TATA box, and TATA box-like regions. Phylogenetic analysis of 5' EF-Ia, which is used for species identification, as well as Madl and Mad2 sequences demonstrated that the Mad2 phylogeny is more congruent with 5' EF-1a than Madl. This suggests Mad2 has diverged among Metarhizium lineages, contributing to clade- and species-specific variation. While other abiotic and biotic factors cannot be excluded in contributing to divergence, it appears that plant associations have been the driving factor causing divergence among Metarhizium species.
Resumo:
Several species of the insect pathogenic fungus Metarhizium are associated with certain plant types and genome analyses suggested a bifunctional lifestyle; as an insect pathogen and as a plant symbiont. Here we wanted to explore whether there was more variation in genes devoted to plant association (Mad2) or to insect association (Mad1) overall in the genus Metarhizium. Greater divergence within the genus Metarhizium in one of these genes may provide evidence for whether host insect or plant is a driving force in adaptation and evolution in the genus Metarhizium. We compared differences in variation in the insect adhesin gene, Mad1, which enables attachment to insect cuticle, and the plant adhesin gene, Mad2, which enables attachment to plants. Overall variation for the Mad1 promoter region (7.1%), Mad1 open reading frame (6.7%), and Mad2 open reading frame (7.4%) were similar, while it was higher in the Mad2 promoter region (9.9%). Analysis of the transcriptional elements within the Mad2 promoter region revealed variable STRE, PDS, degenerative TATA box, and TATA box-like regions, while this level of variation was not found for Mad1. Sequences were also phylogenetically compared to EF-1a, which is used for species identification, in 14 isolates representing 7 different species in the genus Metarhizium. Phylogenetic analysis demonstrated that the Mad2 phylogeny is more congruent with 59 EF-1a than Mad1. This would suggest that Mad2 has diverged among Metarhizium lineages, contributing to clade- and species-specific variation, while it appears that Mad1 has been largely conserved. While other abiotic and biotic factors cannot be excluded in contributing to divergence, these results suggest that plant relationships, rather than insect host, have been a major driving factor in the divergence of the genus Metarhizium.
Resumo:
Several species of the insect pathogenic fungus Metarhizium are associated with certain plant types and genome analyses suggested a bifunctional lifestyle; as an insect pathogen and as a plant symbiont. Here we wanted to explore whether there was more variation in genes devoted to plant association (Mad2) or to insect association (Mad1) overall in the genus Metarhizium. Greater divergence within the genus Metarhizium in one of these genes may provide evidence for whether host insect or plant is a driving force in adaptation and evolution in the genus Metarhizium. We compared differences in variation in the insect adhesin gene, Mad1, which enables attachment to insect cuticle, and the plant adhesin gene, Mad2, which enables attachment to plants. Overall variation for the Mad1 promoter region (7.1%), Mad1 open reading frame (6.7%), and Mad2 open reading frame (7.4%) were similar, while it was higher in the Mad2 promoter region (9.9%). Analysis of the transcriptional elements within the Mad2 promoter region revealed variable STRE, PDS, degenerative TATA box, and TATA box-like regions, while this level of variation was not found for Mad1. Sequences were also phylogenetically compared to EF-1a, which is used for species identification, in 14 isolates representing 7 different species in the genus Metarhizium. Phylogenetic analysis demonstrated that the Mad2 phylogeny is more congruent with 59 EF-1a than Mad1. This would suggest that Mad2 has diverged among Metarhizium lineages, contributing to clade- and species-specific variation, while it appears that Mad1 has been largely conserved. While other abiotic and biotic factors cannot be excluded in contributing to divergence, these results suggest that plant relationships, rather than insect host, have been a major driving factor in the divergence of the genus Metarhizium.
Resumo:
While nitrogen is critical for all plants, they are unable to utilize organically bound nitrogen in soils. Therefore, the majority of plants obtain useable nitrogen through nitrogen fixing bacteria and the microbial decomposition of organic matter. In the majority of cases, symbiotic microorganisms directly furnish plant roots with inorganic forms of nitrogen. More than 80% of all land plants form intimate symbiotic relationships with root colonizing fungi. These common plant/fungal interactions have been defined largely through nutrient exchange, where the plant receives limiting soil nutrients, such as nitrogen, in exchange for plant derived carbon. Fungal endophytes are common plant colonizers. A number of these fungal species have a dual life cycle, meaning that they are not solely plant colonizers, but also saprophytes, insect pathogens, or plant pathogens. By using 15N labeled, Metarhizium infected, wax moth larvae (Galleria mellonella) in soil microcosms, I demonstrated that the common endophytic, insect pathogenic fungi Metarhizium spp. are able to infect living soil borne insects, and subsequently colonize plant roots and furnish ts plant host with useable, insect-derived nitrogen. In addition, I showed that another ecologically important, endophytic, insect pathogenic fungi, Beauveria bassiana, is able to transfer insect-derived nitrogen to its plant host. I demonstrated that these relationships between various plant species and endophytic, insect pathogenic fungi help to improve overall plant health. By using 13C-labeled CO2, added to airtight plant growth chambers, coupled with nuclear magnetic resosnance spectroscopy, I was able to track the movement of carbon from the atmosphere, into the plant, and finally into the root colonized fungal biomass. This indicates that Metarhizium exists in a symbiotic partnership with plants, where insect nitrogen is exchanged for plant carbon. Overall these studies provide the first evidence of nutrient exchange between an insect pathogenic fungus and plants, a relationship that has potentially useful implications on plant primary production, soil health, and overall ecosystem stability.
Resumo:
Les trichothécènes de Fusarium appartiennent au groupe des sesquiterpènes qui sont des inhibiteurs la synthèse des protéines des eucaryotes. Les trichothécènes causent d’une part de sérieux problèmes de santé aux humains et aux animaux qui ont consommé des aliments infectés par le champignon et de l’autre part, elles sont des facteurs importants de la virulence chez plantes. Dans cette étude, nous avons isolé et caractérisé seize isolats de Fusarium de la pomme de terre infectée naturellement dans un champs. Les tests de pathogénicité ont été réalisés pour évaluer la virulence des isolats sur la pomme de terre ainsi que leur capacité à produire des trichothécènes. Nous avons choisi F. sambucinum souche T5 comme un modèle pour cette étude parce qu’il était le plus agressif sur la pomme de terre en serre en induisant un flétrissement rapide, un jaunissement suivi de la mort des plantes. Cette souche produit le 4,15-diacétoxyscirpénol (4,15-DAS) lorsqu’elle est cultivée en milieu liquide. Nous avons amplifié et caractérisé cinq gènes de biosynthèse trichothécènes (TRI5, TRI4, TRI3, TRI11, et TRI101) impliqués dans la production du 4,15-DAS. La comparaison des séquences avec les bases de données a montré 98% et 97% d'identité de séquence avec les gènes de la biosynthèse des trichothécènes chez F. sporotrichioides et Gibberella zeae, respectivement. Nous avons confrenté F. sambucinum avec le champignon mycorhizien à arbuscule Glomus irregulare en culture in vitro. Les racines de carotte et F. sambucinum seul, ont été utilisés comme témoins. Nous avons observé que la croissance de F. sambucinum a été significativement réduite avec la présence de G. irregulare par rapport aux témoins. Nous avons remarqué que l'inhibition de la croissance F. sambucinum a été associée avec des changements morphologiques, qui ont été observés lorsque les hyphes de G. irregulare ont atteint le mycélium de F. sambucinum. Ceci suggère que G. irregulare pourrait produire des composés qui inhibent la croissance de F. sambucinum. Nous avons étudié les patrons d’expression des gènes de biosynthèse de trichothécènes de F. sambucinum en présence ou non de G. irregulare, en utilisant le PCR en temps-réel. Nous avons observé que TRI5 et TRI6 étaient sur-exprimés, tandis que TRI4, TRI13 et TRI101 étaient en sous-exprimés en présence de G. irregulare. Des analyses par chromatographie en phase-gazeuse (GC-MS) montrent clairement que la présence de G. irregulare réduit significativement la production des trichothécènes par F. sambucinum. Le dosage du 4,15-DAS a été réduit à 39 μg/ml milieu GYEP par G. irregulare, comparativement à 144 μg/ml milieu GYEP quand F. sambucinum est cultivé sans G. irregulare. Nous avons testé la capacité de G. irregulare à induire la défense des plants de pomme de terre contre l'infection de F. sambucinum. Des essais en chambre de croissance montrent que G. irregulare réduit significativement l’incidence de la maladie causée par F. sambucinum. Nous avons aussi observé que G. irregulare augmente la biomasse des racines, des feuilles et des tubercules. En utilisant le PCR en temps-réel, nous avons étudié les niveaux d’expression des gènes impliqué dans la défense des plants de pommes de terre tels que : chitinase class II (ChtA3), 1,3-β-glucanase (Glub), peroxidase (CEVI16), osmotin-like protéin (OSM-8e) et pathogenèses-related protein (PR-1). Nous avons observé que G. irregulare a induit une sur-expression de tous ces gènes dans les racines après 72 heures de l'infection avec F. sambucinum. Nous avons également trové que la baisse provoquée par F. sambucinum des gènes Glub et CEVI16 dans les feuilles pourrait etre bloquée par le traitement AMF. Ceci montre que l’inoculation avec G. irregulare constitut un bio-inducteur systémique même dans les parties non infectées par F. sambucinum. En conclusion, cette étude apporte de nouvelles connaissances importantes sur les interactions entre les plants et les microbes, d’une part sur les effets directs des champignons mycorhiziens sur l’inhibition de la croissance et la diminution de la production des mycotoxines chez Fusarium et d’autre part, l’atténuation de la sévérité de la maladie dans des plantes par stimulation leur défense. Les données présentées ouvrent de nouvelles perspectives de bio-contrôle contre les pathogènes mycotoxinogènes des plantes.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
La germination des spores est une étape essentielle dans le cycle de vie de la majorité des champignons filamenteux. Les champignons mycorhiziens à arbuscules (CMA) forment un certain nombre de propagules infectieuses différentes qui augmentent leur potentiel à coloniser les racines. Parmi elles se trouvent les spores extraracinaires et intraracinaires. La paroi cellulaire des spores joue un rôle majeur dans la survie de ces propagules en étant une barrière physique et osmotique. Puisque une cellule peut faire des ajustements considérables dans la composition et la structure de sa paroi, en réponse aux conditions environnementales, il est possible que les parois des spores intraracinaires et extraracinaires montrent des propriétés mécaniques et osmotiques différentes affectant leur germination et leur survie. Pourtant, contrairement à la connaissance de la génétique moléculaire et de la formation de la paroi cellulaire des CMA, peu d’information est disponible au sujet de ces propriétés mécaniques. Les informations sur la germination des CMA dans des conditions hypertoniques sont aussi rares, et les modèles expérimentaux ne séparent généralement pas les effets directs de la forte pression osmotique externe sur la germination des champignons et les effets attribuables aux plantes. Cette étude avait pour but de répondre à deux importantes séries de questions concernant le comportement des spores mycorhiziennes. Nous avons d'abord déterminé la relation entre la composition de la paroi cellulaire, la structure et les propriétés mécaniques du champignon modèle Glomus irregulare (isolat DAOM 197198). La micro-indentation a été utilisée pour mesurer quantitativement les propriétés mécaniques de la paroi cellulaire. La composition (contenu de chitine et de glomaline) de la paroi cellulaire a été quantifiée par immunofluorescence tandis que la microscopie optique a été utilisée pour mesurer l'épaisseur de la paroi cellulaire. La densité locale en glomaline et l’épaisseur de la paroi étaient significativement plus élevées pour les parois des spores extraracinaires alors que la densité locale en chitine et la rigidité n’ont pas montré de variations entre les spores extraracinaires et intraracinaires. La grande variabilité dans les paramètres étudiés nous a empêchés de cibler un facteur principal responsable de la force totale de la paroi lors de la compression. La diminution des concentrations de chitine et de glomaline a été corrélée à l'évolution de la paroi du champignon au cours de son cycle de vie. On a aussi observé une composition différentielle des couches de la paroi: les polymères de chitine et de glomaline furent localisés principalement dans les couches externes et internes de la paroi, respectivement. Dans la deuxième partie de notre travail, nous avons exploré les effets directs d'engrais, par rapport à leur activité de l'eau (aw), sur la germination des spores et la pression de turgescence cellulaire. Les spores ont été soumises à trois engrais avec des valeurs de aw différentes et la germination ainsi que la cytorrhyse (effondrement de la paroi cellulaire) des spores ont été évaluées après différents temps d'incubation. Les valeurs de aw des engrais ont été utilisées comme indicateurs de leurs pressions osmotiques. L'exposition des spores de Glomus irregulare au choc osmotique causé par les engrais dont les valeurs de aw se situent entre 0,982 et 0,882 a provoqué des changements graduels au niveau de leur cytorrhyse et de leur germination. Avec l'augmentation de la pression de turgescence externe, la cytorrhyse a augmenté, tandis que le taux de germination a diminué. Ces effets ont été plus prononcés à des concentrations élevées en éléments nutritifs. La présente étude, bien qu’elle constitue une étape importante dans la compréhension des propriétés mécaniques et osmotiques des spores de CMA, confirme également que ces propriétés dépendent probablement de plusieurs facteurs, dont certains qui ne sont pas encore identifiés.
Resumo:
La vectorisation des médicaments est une approche très prometteuse tant sur le plan médical qu’économique pour la livraison des substances actives ayant une faible biodisponibilité. Dans ce contexte, les polymères en étoile et les dendrimères, macromolécules symétriques et branchées, semblent être les solutions de vectorisation les plus attrayantes. En effet, ces structures peuvent combiner efficacement une stabilité élevée dans les milieux biologiques à une capacité d’encapsulation des principes actifs. Grâce à leur architecture bien définie, ils permettent d’atteindre un très haut niveau de reproductibilité de résultats, tout en évitant le problème de polydispersité. Bien que des nombreuses structures dendritiques aient été proposées ces dernières années, il est cependant à noter que la conception de nouveaux nanovecteurs dendritiques efficaces est toujours d’actualité. Ceci s’explique par des nombreuses raisons telles que celles liées à la biocompatibilité, l’efficacité d’encapsulation des agents thérapeutiques, ainsi que par des raisons économiques. Dans ce projet, de nouvelles macromolécules branchées biocompatibles ont été conçues, synthétisées et évaluées. Pour augmenter leur efficacité en tant qu’agents d’encapsulations des principes actifs hydrophobes, les structures de ces macromolécules incluent un coeur central hydrophobe à base de porphyrine, décanediol ou trioléine modifié et, également, une couche externe hydrophile à base d’acide succinique et de polyéthylène glycol. Le choix des éléments structuraux de futures dendrimères a été basé sur les données de biocompatibilité, les résultats de nos travaux de synthèse préliminaires, ainsi que les résultats de simulation in silico réalisée par une méthode de mécanique moléculaire. Ces travaux ont permis de choisir des composés les plus prometteurs pour former efficacement et d’une manière bien contrôlable des macromolécules polyesters. Ils ont aussi permis d’évaluer au préalable la capacité de futurs dendrimères de capter une molécule médicamenteuse (itraconazole). Durant cette étape, plusieurs nouveaux composés intermédiaires ont été obtenus. L’optimisation des conditions menant à des rendements réactionnels élevés a été réalisée. En se basant sur les travaux préliminaires, l’assemblage de nouveaux dendrimères de première et de deuxième génération a été effectué, en utilisant les approches de synthèse divergente et convergente. La structure de nouveaux composés a été prouvée par les techniques RMN du proton et du carbone 13C, spectroscopie FTIR, UV-Vis, analyse élémentaire, spectrométrie de masse et GPC. La biocompatibilité de produits a été évaluée par les tests de cytotoxicité avec le MTT sur les macrophages murins RAW-262.7. La capacité d’encapsuler les principes actifs hydrophobes a été étudiée par les tests avec l’itraconazole, un antifongique puissant mais peu biodisponible. La taille de nanoparticules formées dans les solutions aqueuses a été mesurée par la technique DLS. Ces mesures ont montré que toutes les structures dendritiques ont tendance à former des micelles, ce qui exclue leurs applications en tant que nanocapsules unimoléculaires. L’activité antifongique des formulations d’itraconazole encapsulé avec les dendrimères a été étudiée sur une espèce d’un champignon pathogène Candida albicans. Ces tests ont permis de conclure que pour assurer l’efficacité du traitement, un meilleur contrôle sur le relargage du principe actif était nécessaire.
Resumo:
La gazéification est aujourd'hui l'une des stratégies les plus prometteuses pour valoriser les déchets en énergie. Cette technologie thermo-chimique permet une réduction de 95 % de la masse des intrants et génère des cendres inertes ainsi que du gaz de synthèse (syngaz). Le syngaz est un combustible gazeux composé principalement de monoxyde de carbone (CO), d'hydrogène (H2) et de dioxyde de carbone (CO2). Le syngaz peut être utilisé pour produire de la chaleur et de l'électricité. Il est également la pierre angulaire d'un grand nombre de produits à haute valeur ajoutée, allant de l'éthanol à l'ammoniac et l'hydrogène pur. Les applications en aval de la production de syngaz sont dictées par son pouvoir calorifique, lui-même dépendant de la teneur du gaz en H2. L’augmentation du contenu du syngaz en H2 est rendu possible par la conversion catalytique à la vapeur d’eau, largement répandu dans le cadre du reformage du méthane pour la production d'hydrogène. Au cours de cette réaction, le CO est converti en H2 et CO2 selon : CO + H2O → CO2 + H2. Ce processus est possible grâce à des catalyseurs métalliques mis en contact avec le CO et de la vapeur. La conversion catalytique à la vapeur d’eau a jusqu'ici été réservé pour de grandes installations industrielles car elle nécessite un capital et des charges d’exploitations très importantes. Par conséquent, les installations de plus petite échelle et traitant des intrants de faible qualité (biomasse, déchets, boues ...), n'ont pas accès à cette technologie. Ainsi, la seule utilisation de leur syngaz à faible pouvoir calorifique, est limitée à la génération de chaleur ou, tout au plus, d'électricité. Afin de permettre à ces installations une gamme d’application plus vaste de leurs syngaz, une alternative économique à base de catalyseur biologique est proposée par l’utilisation de bactéries hyperthermophiles hydrogénogènes. L'objectif de cette thèse est d'utiliser Carboxydothermus hydrogenoformans, une bactérie thermophile carboxydotrophe hydrogénogène comme catalyseur biologique pour la conversion du monoxyde de carbone en hydrogène. Pour cela, l’impact d'un phénomène de biominéralisation sur la production d’H2 a été étudié. Ensuite, la faisabilité et les limites de l’utilisation de la souche dans un bioréacteur ont été évaluées. Tout d'abord, la caractérisation de la phase inorganique prédominante lorsque C. hydrogenoformans est inoculé dans le milieu DSMZ, a révélé une biominéralisation de phosphate de calcium (CaP) cristallin en deux phases. L’analyse par diffraction des rayons X et spectrométrie infrarouge à transformée de Fourier de ce matériau biphasique indique une signature caractéristique de la Mg-whitlockite, alors que les images obtenues par microscopie électronique à transmission ont montré l'existence de nanotiges cristallines s’apparentant à de l’hydroxyapatite. Dans les deux cas, le mode de biominéralisation semble être biologiquement induit plutôt que contrôlé. L'impact du précipité de CaP endogène sur le transfert de masse du CO et la production d’H2 a ensuite été étudié. Les résultats ont été comparés aux valeurs obtenues dans un milieu où aucune précipitation n'est observée. Dans le milieu DSMZ, le KLa apparent (0.22 ± 0.005 min-1) et le rendement de production d’H2 (89.11 ± 6.69 %) étaient plus élevés que ceux obtenus avec le milieu modifié (0.19 ± 0.015 min-1 et 82.60 ± 3.62% respectivement). La présence du précipité n'a eu aucune incidence sur l'activité microbienne. En somme, le précipité de CaP offre une nouvelle stratégie pour améliorer les performances de transfert de masse du CO en utilisant les propriétés hydrophobes de gaz. En second lieu, la conversion du CO en H2 par la souche Carboxydothermus hydrogenoformans fut étudiée et optimisée dans un réacteur gazosiphon de 35 L. Parmi toutes les conditions opérationnelles, le paramètre majeur fut le ratio du débit de recirculation du gaz sur le débit d'alimentation en CO (QR:Qin). Ce ratio impacte à la fois l'activité biologique et le taux de transfert de masse gaz-liquide. En effet, au dessus d’un ratio de 40, les performances de conversion du CO en H2 sont limitées par l’activité biologique alors qu’en dessous, elles sont limitées par le transfert de masse. Cela se concrétise par une efficacité de conversion maximale de 90.4 ± 0.3 % et une activité spécifique de 2.7 ± 0.4 molCO·g–1VSS·d–1. Malgré des résultats prometteurs, les performances du bioréacteur ont été limitées par une faible densité cellulaire, typique de la croissance planctonique de C. hydrogenoformans. Cette limite est le facteur le plus contraignant pour des taux de charge de CO plus élevés. Ces performances ont été comparées à celles obtenues dans un réacteur à fibres creuses (BRFC) inoculé par la souche. En dépit d’une densité cellulaire et d’une activité volumétrique plus élevées, les performances du BRFC à tout le moins cinétiquement limitées quand elles n’étaient pas impactées par le transfert de masse, l'encrassement et le vieillissement de la membrane. Afin de parer à la dégénérescence de C. hydrogenoformans en cas de pénurie de CO, la croissance de la bactérie sur pyruvate en tant que seule source de carbone a été également caractérisée. Fait intéressant, en présence simultanée de pyruvate et de CO, C. hydrogenoformans n’a amorcé la consommation de pyruvate qu’une fois le CO épuisé. Cela a été attribué à un mécanisme d'inhibition du métabolisme du pyruvate par le CO, faisant ainsi du pyruvate le candidat idéal pour un système in situ de secours.
Resumo:
The beta-glucosidase enzyme purified from the marine fungus, Aspergillus sydowii BTMFS 55 showed a good yield of enzyme production under solid state fermentation. The statistical optimization of the media components revealed that moisture content, concentration of peptone and inoculum are the major parameters which supported the maximal enzyme production. The purified enzyme showed low pH activity and stability, glucose tolerance and activation by ethanol. It could produce ethanol from wheat bran and rice straw by simultaneous saccharification and fermentation with yeast.The glucosidase purified from Aspergillus sydowii BTMFS 55 shows great potential for several biotechnological applications such as the production of bio-ethanol from agricultural biomass and improvement in the aromatic character of wines and fruit juices through the hydrolysis of flavour glucosidic precursors. There is immense scope for the application of this marine fungus in the biofuel production besides in other industries provided further studies are pursued in exploiting this enzyme and the organism particularly scale up studies with respect to application. There is also ample scope for cloning of the gene encoding beta-glucosidase in domesticated hosts such as Pichia pastoris or S. cerevisiae that can produce ethanol directly from cellulosic biomass.
Resumo:
The present work is focussed mainly on the utilization of this weed-biomass on a biochemical and biotechnological basis. Before designing scientific and systematic utilization of any given biomass, the detailed analysis of its chemical componets is essential. Hence, as the preliminary part of the experimental works, samples of Salvinia were analysed for its chemical constituents.Before designing scientific and systematic utilization of any given biomass, the detailed analysis of its chemical componets is essential .The composition of the substrate contributes much to the nutritive value of mushrooms. Hence, alterations in the nutritive value of mushrooms (in terms of total carbohydrates, proteins, lipids and minerals) in response to Salvinia as substrate were analyzed.Substrate after mushroom harvest (spent substrate) can be utilized for various purposes such as cattle feed, as a source of degradative enzymes, as a substrate for other mushrooms and as garden manure. But studies are limited with regard to the utilization of Pleurotus spent substrate as garden manure. So the value of spent substrate as an organic supplement and its multidimensional impacts on soil chemical status, soil microbial population dynamics and plant growth (Amhurium andreanum) were carried out.Major findings of this work have got much relevance in designing measures to utilize different types of plant biomass, especially aquatic weeds, with the aid of a powerful biological tool, the lignocellulolytic fungus, Pleurorus
Resumo:
In this thesis an attempt is made to explore the potential of marine fungi for the production of chitinolytic enzymes and to recognize the ability to hydrolyse native chitin through submerged as well as solid substrate fermentation culture conditions, using wheat bran and shellfish processing waste such as ‘prawn waste’ as solid substrates. Attempt was made to isolate a potential chitinase producing fungus from marine environment and to develop an ideal bioprocess for the production ofchitolytic enzymes.Present study indicate scope for utilization of B. bassiana for industrial production of chitinase using prawn waste as solid substrate employing solid substrate fermentation.
Resumo:
Beta-glucosidases are critical enzymes in biomass hydrolysis process and is important in creating highly efficient enzyme cocktails for the bio-ethanol industry. Among the two strategies proposed for overcoming the glucose inhibition of commercial cellulases, one is to use heavy dose of BGL in the enzyme blends and the second is to do simultaneous saccharification and fermentation where glucose is converted to alcohol as soon as it is being generated. While the former needs extremely high quantities of enzyme, the latter is inefficient since the conditions for hydrolysis and fermentation are different. This makes the process technically challenging and also in this case, the alcohol generation is lesser, making its recovery difficult. A third option is to use glucose tolerant β-glucosidases which can work at elevated glucose concentrations. However, there are very few reports on such enzymes from microbial sources especially filamentous fungi which can be cultivated on cheap biomass as raw material. There has been very less number of studies directed at this, though there is every possibility that filamentous fungi that are efficient degraders of biomass may harbor such enzymes. The study therefore aimed at isolating a fungus capable of secreting glucose tolerant β- glucosidase enzyme. Production, characterization of β-glucosidases and application of BGL for bioethanol production were attempted.