985 resultados para TEMPOROMANDIBULAR JOINT DYSFUNCTION SYNDROME
Resumo:
The objective of the current study was to evaluate disease-related beliefs, adherence to treatment, quality of life, coping strategies and cognitive status in a group of Brazilian patients with Temporomandibular Disorder (TMD). Thirty patients were evaluated with a semi-directed interview, the Coping Strategies Inventory, and a Mini-Mental State Examination. Although half (50%) of the patients had known their diagnosis long term, 40% of the sample were not correctly following proposed treatment. All patients had a similar pattern of pain behavior related to TMD, while disease-related beliefs, quality of life and coping strategies were variable. Expectations about treatment also had significant association with treatment adherence. The findings of this study suggest that a more thorough understanding of individual differences in TMD is warranted.
Resumo:
The aim of this study is to analyze the effect of neuromuscular electrical stimulation (NMES) on myoelectrical activity and on joint torque during isometric plantar flexion contraction. Ten healthy young adult subjects participate in this study. The electrodes for NMES are placed along posterior thigh along ciatic nerve trajectory. It is measured the myoelectrical activity and the isometric torque generated by ankle plantar flexion with an isokinetic dynamometer. The conditions of isometric contractions are maximum isometric voluntary contraction (MIVC), NMES, and association of both (MIVC+NMES). The results show lower torque during NMES and larger SOL activity compare to the others. Besides, in order to keep the same objective task (to produce the same level of torque), neuromuscular adaptations are necessary on the common drive.
Resumo:
Obesity has been shown to impair myocardial performance. Nevertheless, the mechanisms underlying the participation of calcium (Ca(2+)) handling on cardiac dysfunction in obesity models remain unknown. L-type Ca(2+) channels and sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a), may contribute to the cardiac dysfunction induced by obesity. The purpose of this study was to investigate whether myocardial dysfunction in obese rats is related to decreased activity and/or expression of L-type Ca(2+) channels and SERCA2a. Male 30-day-old Wistar rats were fed standard (C) and alternately four palatable high-fat diets (Ob) for 15 weeks. Obesity was determined by adiposity index and comorbidities were evaluated. Myocardial function was evaluated in isolated left ventricle papillary muscles under basal conditions and after inotropic and lusitropic maneuvers. L-type Ca(2+) channels and SERCA2a activity were determined using specific blockers, while changes in the amount of channels were evaluated by Western blot analysis. Phospholamban (PLB) protein expression and the SERCA2a/PLB ratio were also determined. Compared with C rats, the Ob rats had increased body fat, adiposity index and several comorbidities. The Ob muscles developed similar baseline data, but myocardial responsiveness to post-rest contraction stimulus and increased extracellular Ca(2+) was compromised. The diltiazem promoted higher inhibition on developed tension in obese rats. In addition, there were no changes in the L-type Ca(2+) channel protein content and SERCA2a behavior (activity and expression). In conclusion, the myocardial dysfunction caused by obesity is related to L-type Ca(2+) channel activity impairment without significant changes in SERCA2a expression and function as well as L-type Ca(2+) protein levels. J. Cell. Physiol. 226: 2934-2942, 2011. (C) 2011 Wiley-Liss, Inc.
Resumo:
We investigated the effect of joint immobilization on the postural sway during quiet standing. We hypothesized that the center of pressure (COP), rambling, and trembling trajectories would be affected by joint immobilization. Ten young adults stood on a force plate during 60 s without and with immobilized joints (only knees constrained, CK; knees and hips, CH; and knees, hips, and trunk, CT). with their eyes open (OE) or closed (CE). The root mean square deviation (RMS, the standard deviation from the mean) and mean speed of COP, rambling, and trembling trajectories in the anterior-posterior and medial-lateral directions were analyzed. Similar effects of vision were observed for both directions: larger amplitudes for all variables were observed in the CE condition. In the anterior-posterior direction, postural sway increased only when the knees, hips, and trunk were immobilized. For the medial-lateral direction, the RMS and the mean speed of the COP, rambling, and trembling displacements decreased after immobilization of knees and hips and knees, hips, and trunk. These findings indicate that the single inverted pendulum model is unable to completely explain the processes involved in the control of the quiet upright stance in the anterior-posterior and medial-lateral directions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The role of exercise training (ET) on cardiac renin-angiotensin system (RAS) was investigated in 3-5 month-old mice lacking alpha(2A-) and alpha(2C-)adrenoceptors (alpha(2A)/alpha(2C)ARKO) that present heart failure (HF) and wild type control (WT). ET consisted of 8-week running sessions of 60 min, 5 days/week. In addition, exercise tolerance, cardiac structural and function analysis were made. At 3 months, fractional shortening and exercise tolerance were similar between groups. At 5 months, alpha(2A)/alpha(2C)ARKO mice displayed ventricular dysfunction and fibrosis associated with increased cardiac angiotensin (Ang) II levels (2.9-fold) and increased local angiotensin-converting enzyme activity (ACE 18%). ET decreased alpha(2A)/alpha(2C)ARKO cardiac Ang II levels and ACE activity to age-matched untrained WT mice levels while increased ACE2 expression and prevented exercise intolerance and ventricular dysfunction with little impact on cardiac remodeling. Altogether, these data provide evidence that reduced cardiac RAS explains, at least in part, the beneficial effects of ET on cardiac function in a genetic model of HF.
Resumo:
The aim of this study was to investigate the kinematic, kinetic, and electromyographic pattern before, during and after downward squatting when the trunk movement is restricted in the sagittal plane. Eight healthy subjects performed downward squatting at two different positions, semisquatting (40 degrees knee flexion) and half squatting (70 degrees knee flexion). Electromyographic responses of the vastus medialis oblique, vastus medialis longus, rectus femoris, vastus lateralis, biceps femoris, semitendineous, gastrocnemius lateralis, and tibialis anterior were recorded. The kinematics of the major joints were reconstructed using an optoelectronic system. The center of pressure (COP) was obtained using data collected from one force plate, and the ankle and knee joint torques were calculated using inverse dynamics. In the upright position there were small changes in the COP and in the knee and ankle joint torques. The tibialis anterior provoked the disruption of this upright position initiating the squat. During the acceleration phase of the squat the COP moved posteriorly, the knee joint torque remained in flexion and there was no measurable muscle activation. As the body went into the deceleration phase, the knee joint torque increased towards extension with major muscle activities being observed in the four heads of the quadriceps. Understanding these kinematic, kinetic and EMG strategies before, during and after the squat is expected to be beneficial to practitioners for utilizing squatting as a task for improving motor function. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Exercise training (ET) is a coadjuvant therapy in preventive cardiology. It delays cardiac dysfunction and exercise intolerance in heart failure (HF); however, the molecular mechanisms underlying its cardioprotection are poorly understood. We tested the hypothesis that ET would prevent Ca2+ handling abnormalities and ventricular dysfunction in sympathetic hyperactivity-induced HF mice. A cohort of male wildtype (WT) and congenic (alpha 2A/alpha 2C)-adrenoceptor knockout ((alpha 2A/alpha 2C)ARKO) mice with C57BL6/J genetic background (3-5 mo of age) were randomly assigned into untrained and exercise-trained groups. ET consisted of 8-wk swimming session, 60 min, 5 days/wk. Fractional shortening (FS) was assessed by two-dimensional guided M-mode echocardiography. The protein expression of ryanodine receptor (RyR), phospho-Ser(2809)-RyR, sarcoplasmic reticulum Ca2+ ATPase (SERCA2), Na+/Ca2+ exchanger (NCX), phospholamban (PLN), phospho-Ser(16)-PLN, and phospho-Thr(17)-PLN were analyzed by Western blotting. At 3 mo of age, no significant difference in FS and exercise tolerance was observed between WT and (alpha 2A/alpha 2C)ARKO mice. At 5 mo, when cardiac dysfunction is associated with lung edema and increased plasma norepinephrine levels, (alpha 2A/alpha 2C)ARKO mice presented reduced FS paralleled by decreased SERCA2 (26%) and NCX (34%). Conversely, (alpha 2A/alpha 2C)ARKO mice displayed increased phospho-Ser(16)-PLN (76%) and phospho-Ser(2809)-RyR (49%). ET in (alpha 2A/alpha 2C)ARKO mice prevented exercise intolerance, ventricular dysfunction, and decreased plasma norepinephrine. ET significantly increased the expression of SERCA2 (58%) and phospho-Ser(16)-PLN (30%) while it restored the expression of phospho-Ser(2809)-RyR to WT levels. Collectively, we provide evidence that improved net balance of Ca2+ handling proteins paralleled by a decreased sympathetic activity on ET are, at least in part, compensatory mechanisms against deteriorating ventricular function in HF.
Resumo:
Background: Studies have shown that the autonomic dysfunction accompanied by impaired baroreflex sensitivity was associated with higher mortality. However, the influence of decreased baroreflex sensitivity on cardiac function, especially in diastolic function, is not well understood. This study evaluated the morpho-functional changes associated with baroreflex impairment induced by chronic sinoaortic denervation (SAD). Methods and Results: Animals were divided into sinoaortic denervation (SAD) and control (C) groups. Baroreflex sensitivity was evaluated by tachycardic and bradycardic responses, induced by vasoactive drugs. Cardiac function was studied by echocardiography and by left ventricle (LV) catheterization. LV collagen content and the expression of regulatory proteins involved in intracellular Ca(2+) homeostasis were quantified. Results showed higher LV mass in SAD versus C animals. Furthermore, an increase in deceleration time of E-wave in the SAD versus the C group (2.14 +/- 0.07 ms vs 1.78 +/- 0.03 ms) was observed. LV end-diastolic pressure was increased and the minimum dP/dt was decreased in the SAD versus the C group (12 +/- 1.5 mm Hg vs 5.3 +/- 0.2 mm Hg and 7,422 +/- 201 vs 4,999 +/- 345 mm Hg/s, respectively). SERCA/NCX ratio was lower in SAD than in control rats. The same was verified in SERCA/PLB ratio. Conclusions: The results suggest that baroreflex dysfunction is associated with cardiac diastolic dysfunction independently of the presence of other risk factors. (J Cardiac Fail 2011;17:519-525)
Resumo:
This study reports for the first time an estimation of the internal net joint forces and torques on adults` lower limbs and pelvis when walking in shallow water, taking into account the drag forces generated by the movement of their bodies in the water and the equivalent data when they walk on land. A force plate and a video camera were used to perform a two-dimensional gait analysis at the sagittal plane of 10 healthy young adults walking at comfortable speeds on land and in water at a chest-high level. We estimated the drag force on each body segment and the joint forces and torques at the ankle, knee, and hip of the right side of their bodies using inverse dynamics. The observed subjects` apparent weight in water was about 35% of their weight on land and they were about 2.7 times slower when walking in water. When the subjects walked in water compared with walking on land, there were no differences in the angular displacements but there was a significant reduction in the joint torques which was related to the water`s depth. The greatest reduction was observed for the ankle and then the knee and no reduction was observed for the hip. All joint powers were significantly reduced in water. The compressive and shear joint forces were on average about three times lower during walking in water than on land. These quantitative results substantiate the use of water as a safe environment for practicing low-impact exercises, particularly walking. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: To study the effect of additional strengthening of hip abductor and lateral rotator muscles in a strengthening quadriceps exercise rehabilitation programme for patients with the patellofemoral pain syndrome. Design: Randomized controlled pilot trial. Setting: Clinical setting with home programme. Participants: Fourteen patients with patellofemoral pain syndrome. Intervention: The subjects were randomly assigned to the intervention group (strengthening of quadriceps plus strengthening of hip abductor and lateral rotator muscles) or to the control group (strengthening of quadriceps). Both groups participated in a six-week home exercise protocol. Main outcome measures: The perceived pain symptoms, isokinetic eccentric knee extensor, hip abductor and lateral rotator torques and the gluteus medius electromyographic activity were assessed before and after treatment. Parametric and non-parametric tests were used to compare the groups before and after treatment with alpha = 0.05. Results: Only the intervention group improved perceived pain symptoms during functional activities (P=0.02-0.04) and also increased their gluteus medius electromyographic activity during isometric voluntary contraction (P=0.03), Eccentric knee extensors torque increased in both groups (P=0.04 and P=0.02). There was no statistically significant difference in the hip muscles torque in either group. Conclusion: Supplementation of strengthening of hip abductor and lateral rotator muscles in a strengthening quadriceps exercise programme provided additional benefits with respect to the perceived pain symptoms during functional activities in patients with patellofemoral pain syndrome after six weeks of treatment.
Resumo:
We describe a one-time signature scheme based on the hardness of the syndrome decoding problem, and prove it secure in the random oracle model. Our proposal can be instantiated on general linear error correcting codes, rather than restricted families like alternant codes for which a decoding trapdoor is known to exist. (C) 2010 Elsevier Inc. All rights reserved,
Resumo:
This work presents a comparison between laser weld (LBW) and electric resistance spot weld (ERSW) processes used for assemblies of components in a body-in-white (BIW) at a world class automotive industry. It is carried out by evaluating the mechanical strength modeled both by experimental and numerical methods. An ""Arcan"" multiaxial test was designed and manufactured in order to enable 0 degrees, 45 degrees and 90 degrees directional loadings. The welded specimens were uncoated low carbon steel sheets (S-y = 170 MPa) used currently at the automotive industry, with two different thicknesses: 0.80 and 1.20 mm. A numerical analysis was carried out using the finite element method (FEM) through LS-DYNA code. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Duplex and superduplex stainless steels present superior mechanical and corrosion properties when compared to usual stainless steels. This superiority is based on chemical composition when in a balanced microstructure (approximately 50% of ferrite). During welding, changes may occur in both, the chemical composition and volume fraction of phases in the material, which may generate the presence of intermetallic phases and, as a consequence, modify the mechanical and corrosion properties of this group of stainless steels. The objective of this work is to apply ASTM A923- Practice A to verify the presence of intermetallic phases in welded joints of UNS 32750 su-perduplex stainless steel. Tubes of UNS 32750, with external diameters of 18 and 44 mm and a thickness of 1.5 mm, were welded using orbital GTAW, with filler metal 25Cr-10Ni-4Mo and a diameter of 0.8 mm. The metal-based and welded joints were characterized by optical and scanning electron microscopy. The results showed that there was no precipitation of the intermetallic phase, such as sigma phase, detected by ASTM A923, but the HAZ of the two tubes studied presented small regions with chromium nitrides, which can also change the properties of welded joins.
Resumo:
Yellow leaf syndrome was a serious problem in the beginning of the 1990s in Brazil, when yield losses were estimated to be around 50%. The disease is currently endemic, but it is considered potentially important. Previous studies have revealed only the presence of a luteovirus associated with the disease in Brazil. We report that a phytoplasma of 16SrI-B is also associated with this disease. This is the first demonstration of the presence of a group 16SrI-B phytoplasma in association with sugarcane yellow leaf in Brazil.
Resumo:
Sugarcane yellow leaf syndrome caused serious damage to crops in the Sao Paulo State, Brazil, in the 1990`s. The syndrome was also reported in other countries and investigations into the etiology revealed an association between the disease and virus and/or phytoplasma. The disease is potentially important and occurs endemically in that State, and for this reason the present study was conducted in order to demonstrate the occurrence of phytoplasma in three traditional sugarcane-producing areas, in Sao Paulo State, through molecular detection From naturally infected plants. Symptomatic plants belonging to varieties SP71-6163, SP71-6180 and SP89-1115 were sampled from Piracicaba, Jau and Ribeirao Preto, and total DNA was extracted from foliar tissues. Nested PCR was conducted with primer pairs P1/ Tint-16F2n/R2, and the amplified products were analyzed by electrophoresis on agarose gels. Amplified DNA fragments of 1.2 kb evidenced the presence of phytoplasma in 36% of symptomatic plants and revealed its Occurrence in all sampled regions. The results demonstrated that phytoplasma is associated with the disease and that it is important to keep a safe inspection of nurseries and monitoring plants in the field, as well as to Select Sugarcane genotypes with a good level of resistance in breeding programs.