922 resultados para Synthetic Peptides
Resumo:
Recently, probiotic fermented milk products have raised interest regarding their potential anti-hypertensive activity mainly due to the production of angiotensin-I-converting enzyme (ACE) inhibitory peptides. Ionic calcium released upon milk acidification during fermentation is also known to exert hypotensive activity. Thus, the main aim of this study was to screen probiotic strains for their ability to induce ACE-inhibitory activity upon fermentation of milk. The relationship of ACE-inhibitory activity percentage (ACEi%) with cell growth, pH, degree of hydrolysis and the concentration of ionic calcium released during the fermentation was also investigated. Compared with other lactic acid bacteria, Lactobacillus casei YIT 9029 and Bifidobacterium bifidum MF 20/5 were able to induce strong ACE-inhibitory activity. Furthermore, it was found that the ionic calcium released during milk fermentation could contribute to the ACE-inhibitory activity. These findings will contribute to the development of new probiotic dairy products with anti-hypertensive activity.
Resumo:
The disruption of the human immunolobulin E–high affinity receptor I (IgE–FcεRI) protein–protein interaction (PPI) is a validated strategy for the development of anti asthma therapeutics. Here, we describe the synthesis of an array of conformationally constrained cyclic peptides based on an epitope of the A–B loop within the Cε3 domain of IgE. The peptides contain various tolan (i.e., 1,2-biarylethyne) amino acids and their fully and partially hydrogenated congeners as conformational constraints. Modest antagonist activity (IC50 660 μM) is displayed by the peptide containing a 2,2′-tolan, which is the one predicted by molecular modeling to best mimic the conformation of the native A–B loop epitope in IgE.
Resumo:
Ring-closing olefin metathesis reactions are used to create intramolecularly ring closed peptides or inter-molecularly ring-closed peptide dimers based on a designed amyloid peptide sequence. The uncrosslinked peptide self-assembles into high aspect ratio nanotubes, however ring-closing leads to the formation of fibrillar and twisted/helical ribbon structures.
Resumo:
The self-assembly in aqueous solution of PEG-peptide conjugates comprising a model amyloid peptide sequence FFKLVFF that contains the Ab(16–20) KLVFF motif is investigated. X-ray diffraction reveals different packing motifs dependent on PEG chain length. This is correlated to remarkable differences in self-assembled nanostructures. The control of strand registry points to a subtle interplay between aromatic stacking, electrostatic and amphiphilic interactions.
Resumo:
Angiotensin I-converting enzyme (ACE) inhibition is one of the mechanisms by which reduction in blood pressure is exerted. Whey proteins are a rich source of ACE inhibitory peptides and have shown a blood pressure reduction effect i.e. antihypertensive activity. The aim of this work was to develop a simplified process using a combination of adsorption and microfiltration steps for the production of hydrolysates from whey with high ACE inhibitory activity and potency; the latter was measured as the IC50, which is the peptide concentration required to reduce ACE activity by half. This process integrates the selective separation of β-lactoglobulin and casein derived peptides (CDP) from rennet whey and their hydrolysis, which results in partially pure, less complex hydrolysates with high bioactive potency. Hydrolysis was carried out with protease N ‘Amano’ in a thermostatically controlled membrane reactor operated in a batch mode. By applying the integrative approach it was possible to produce from the same feedstock two different hydrolysates that exhibited high ACE inhibition. One hydrolysate was mainly composed of casein-derived peptides with IC50= 285 μg/mL. In this hydrolysate we identified the well known potent ACE-I and anti-hypertensive tri-peptide Ile-Pro-Pro (IPP) and another novel octa-peptide Gln-Asp-Lys-Thr-Glu-Ile-Pro-Thr (QDKTEIPT). The second hydrolysate was mainly composed of β-lactoglobulin derived peptides with IC50=128 µg/mL. This hydrolysate contained a tetra-peptide (Ile-Ile-Ala-Glu) IIAE as one of the two major peptides. A further advantage to this process is that enzyme activity was substantially increased as enzyme product inhibition was reduced.
Resumo:
Flood extents caused by fluvial floods in urban and rural areas may be predicted by hydraulic models. Assimilation may be used to correct the model state and improve the estimates of the model parameters or external forcing. One common observation assimilated is the water level at various points along the modelled reach. Distributed water levels may be estimated indirectly along the flood extents in Synthetic Aperture Radar (SAR) images by intersecting the extents with the floodplain topography. It is necessary to select a subset of levels for assimilation because adjacent levels along the flood extent will be strongly correlated. A method for selecting such a subset automatically and in near real-time is described, which would allow the SAR water levels to be used in a forecasting model. The method first selects candidate waterline points in flooded rural areas having low slope. The waterline levels and positions are corrected for the effects of double reflections between the water surface and emergent vegetation at the flood edge. Waterline points are also selected in flooded urban areas away from radar shadow and layover caused by buildings, with levels similar to those in adjacent rural areas. The resulting points are thinned to reduce spatial autocorrelation using a top-down clustering approach. The method was developed using a TerraSAR-X image from a particular case study involving urban and rural flooding. The waterline points extracted proved to be spatially uncorrelated, with levels reasonably similar to those determined manually from aerial photographs, and in good agreement with those of nearby gauges.
Resumo:
Stereoscopic white-light imaging of a large portion of the inner heliosphere has been used to track interplanetary coronal mass ejections. At large elongations from the Sun, the white-light brightness depends on both the local electron density and the efficiency of the Thomson-scattering process. To quantify the effects of the Thomson-scattering geometry, we study an interplanetary shock using forward magnetohydrodynamic simulation and synthetic white-light imaging. Identifiable as an inclined streak of enhanced brightness in a time–elongation map, the travelling shock can be readily imaged by an observer located within a wide range of longitudes in the ecliptic. Different parts of the shock front contribute to the imaged brightness pattern viewed by observers at different longitudes. Moreover, even for an observer located at a fixed longitude, a different part of the shock front will contribute to the imaged brightness at any given time. The observed brightness within each imaging pixel results from a weighted integral along its corresponding ray-path. It is possible to infer the longitudinal location of the shock from the brightness pattern in an optical sky map, based on the east–west asymmetry in its brightness and degree of polarisation. Therefore, measurement of the interplanetary polarised brightness could significantly reduce the ambiguity in performing three-dimensional reconstruction of local electron density from white-light imaging.
Resumo:
A strategy is presented that exploits the ability of synthetic polymers of different nature to disturb the strong selfassembly capabilities of amyloid based β-sheet forming peptides. Following a convergent approach, the peptides of interest were synthesized via solid-phase peptide synthesis (SPPS) and the polymers via reversible addition−fragmentation chain transfer (RAFT) polymerization, followed by a copper(I) catalyzed azide− alkyne cycloaddition (CuAAC) to generate the desired peptide− polymer conjugates. This study focuses on a modified version of the core sequence of the β-amyloid peptide (Aβ), Aβ(16−20) (KLVFF). The influence of attaching short poly(Nisopropylacrylamide) and poly(hydroxyethylacrylate) to the peptide sequences on the self-assembly properties of the hybrid materials were studied via infrared spectroscopy, TEM, circular dichroism and SAXS. The findings indicate that attaching these polymers disturbs the strong self-assembly properties of the biomolecules to a certain degree and permits to influence the aggregation of the peptides based on their β-sheets forming abilities. This study presents an innovative route toward targeted and controlled assembly of amyloid-like fibers to drive the formation of polymeric nanomaterials.
Resumo:
New bifunctional pyrazole based ligands of the type [C3HR2N2CONR'] (where R = H or CH3; R' = CH3, C2H5, or (C3H7)-C-i) were prepared and characterized. The coordination chemistry of these ligands with uranyl nitrate and uranyl bis(dibenzoyl methanate) was studied with infrared (IR), H-1 NMR, electrospray-mass spectrometry (ES-MS), elemental analysis, and single crystal X-ray diffraction methods. The structure of compound [UO2(NO3)(2)(C3H3N2CON{C2H5}(2))] (2) shows that the uranium(VI) ion is surrounded by one nitrogen atom and seven oxygen atoms in a hexagonal bipyramidal geometry with the ligand acting as a bidentate chelating ligand and bonds through both the carbamoyl oxygen and pyrazolyl nitrogen atoms. In the structure of [UO2(NO3)(2)(H2O)(2)(C5H7N2CON {C2H5}(2))(2)], (5) the pyrazole figand acts as a second sphere ligand and hydrogen bonds to the water molecules through carbamoyl oxygen and pyrazolyl nitrogen atoms. The structure of [UO2(DBM)(2)C3H3N2CON{C2H5}(2)] (8) (where DBM = C6H5COCHCOC6H5) shows that the pyrazole ligand acts as a monodentate ligand and bonds through the carbamoyl oxygen to the uranyl group. The ES-MS spectra of 2 and 8 show that the ligand is similarly bonded to the metal ion in solution. Ab initio quantum chemical studies show that the steric effect plays the key role in complexation behavior.
Resumo:
The present invention provides a process comprising substitution of an acceptor molecule comprising a group -XC(O)- wherein X is O, S or NR8, where R8 is C1-6 alkyl, C6-12 aryl or hydrogen, with a nucleophile, wherein the acceptor molecule is cyclised such that said nucleophilic substitution at -XC (O)- occurs without racemisation. This process has particular application for the production of a peptide by extension from the activated carboxy-terminus of an acyl amino acid residue without epimerisation.
Resumo:
The present invention provides a process comprising substitution of an acceptor molecule comprising a group -XC(O)- wherein X is O, S or NR8, where R8 is C1-6 alkyl, C6-12 aryl or hydrogen, with a nucleophile, wherein the acceptor molecule is cyclised such that said nucleophilic substitution at -XC (O)- occurs without racemisation. This process has particular application for the production of a peptide by extension from the activated carboxy-terminus of an acyl amino acid residue without epimerisation.
Resumo:
Potent angiotensin I-converting enzyme (ACE) inhibitory peptide mixtures were obtained from the hydrolysis of β-lactoglobulin (βLg) using Protease N Amano, a food-grade commercial proteolytic preparation. Hydrolysis experiments were carried out for 8 h at two different temperatures and neutral pH. Based on their ACE inhibitory activity, samples of 6 h of digestion were chosen for further analysis. The temperature used for the hydrolysis had a marked influence on the type of peptides produced and their concentration in the hydrolysate. Protease N Amano was found to produce very complex peptide mixtures; however, the partially fractionated hydrolysates had already very potent ACE inhibitory activity. The novel heptapeptide SAPLRVY was isolated and characterised. It corresponded to βLg f(36–42) and had an IC50 value of 8 μm, which is considerably lower than the most potent ACE inhibitory peptides derived from bovine βLg reported so far.
Resumo:
The interfacial behavior of the model amyloid peptide octamer YYKLVFFC (peptide 1) and two other amyloid peptides YEVHHQKLVFF (peptide 2) and KKLVFFA (peptide 3) at the metal|aqueous solution interface was studied by voltammetric and constant current chronopotentiometric stripping (CPS). All three peptides are adsorbed in a wide potential range and exhibit different interfacial organizations depending on the electrode potential. At the least negative potentials, chemisorption of peptide 1 occurs through the formation of a metal sulfur bond. This bond is broken close to −0.6 V. The peptide undergoes self-association at more negative potentials, leading to the formation of a “pit” characteristic of a 2D condensed film. Under the same conditions the other peptides do not produce such a pit. Formation of the 2D condensed layer in peptide 1 is supported by the time, potential and temperature dependences of the interfacial capacity and it is shown that presence of the 2D layer is reflected by the peptide CPS signals due to the catalytic hydrogen evolution. The ability of peptide 1 to form the potential-dependent 2D condensed layer has been reported neither for any other peptide nor for any protein molecule. This ability might be related to the well-known oligomerization and aggregation of Alzheimer amyloid peptides.
Resumo:
Flooding is a particular hazard in urban areas worldwide due to the increased risks to life and property in these regions. Synthetic Aperture Radar (SAR) sensors are often used to image flooding because of their all-weather day-night capability, and now possess sufficient resolution to image urban flooding. The flood extents extracted from the images may be used for flood relief management and improved urban flood inundation modelling. A difficulty with using SAR for urban flood detection is that, due to its side-looking nature, substantial areas of urban ground surface may not be visible to the SAR due to radar layover and shadow caused by buildings and taller vegetation. This paper investigates whether urban flooding can be detected in layover regions (where flooding may not normally be apparent) using double scattering between the (possibly flooded) ground surface and the walls of adjacent buildings. The method estimates double scattering strengths using a SAR image in conjunction with a high resolution LiDAR (Light Detection and Ranging) height map of the urban area. A SAR simulator is applied to the LiDAR data to generate maps of layover and shadow, and estimate the positions of double scattering curves in the SAR image. Observations of double scattering strengths were compared to the predictions from an electromagnetic scattering model, for both the case of a single image containing flooding, and a change detection case in which the flooded image was compared to an un-flooded image of the same area acquired with the same radar parameters. The method proved successful in detecting double scattering due to flooding in the single-image case, for which flooded double scattering curves were detected with 100% classification accuracy (albeit using a small sample set) and un-flooded curves with 91% classification accuracy. The same measures of success were achieved using change detection between flooded and un-flooded images. Depending on the particular flooding situation, the method could lead to improved detection of flooding in urban areas.