999 resultados para Superconductor materials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel technique for high-power extracavity pulse compression with a nonlinear solid material is demonstrated. Before spectral broadening by self-phase modulation in the solid material, a short filament generated in argon is used as a spatial filter, which works for a uniform spectrum broadening over the spatial profile. Compensated by chirped mirrors, a 15-fs pulse is generated from a 32-fs input laser pulse. A total transmission larger than 80% after the solid material is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of fishing gear in fishing cannot be over-emphasized; as without it fish cannot be obtained. The method used to catch fish affects the condition in which the product is landed. This means that a bad-catching method would produced bad fish to the consumer. To achieve the goal of self-sufficiency in fish production in Nigeria, there is need to address the lingering problems of fishing gear and craft technology, especially in terms of availability of materials and their cost. The sale and making of fishing gear materials are two areas of fisheries, which are yet to be exploited by the general public as forms of businesses for livelihood. The study is conducted in villages around the lower part of Kainji Lake, towards the dam, including New Bussa. It reveals that only the fishermen themselves are involved in making their own fishing gears while those involved in the selling of fishing gear materials like the sheet netting, ropes, twines, floats, sinkers etc are business men and women who may not have any experience of fishing. Also considered in the study is the art of making fishing crafts like the canoe and gourd. Very few entrepreneurs are involved and they are so skilled that each is specialized in the making of only one kind of craft or gear

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large number of technologically important materials undergo solid-solid phase transformations. Examples range from ferroelectrics (transducers and memory devices), zirconia (Thermal Barrier Coatings) to nickel superalloys and (lithium) iron phosphate (Li-ion batteries). These transformations involve a change in the crystal structure either through diffusion of species or local rearrangement of atoms. This change of crystal structure leads to a macroscopic change of shape or volume or both and results in internal stresses during the transformation. In certain situations this stress field gives rise to cracks (tin, iron phosphate etc.) which continue to propagate as the transformation front traverses the material. In other materials the transformation modifies the stress field around cracks and effects crack growth behavior (zirconia, ferroelectrics). These observations serve as our motivation to study cracks in solids undergoing phase transformations. Understanding these effects will help in improving the mechanical reliability of the devices employing these materials.

In this thesis we present work on two problems concerning the interplay between cracks and phase transformations. First, we consider the directional growth of a set of parallel edge cracks due to a solid-solid transformation. We conclude from our analysis that phase transformations can lead to formation of parallel edge cracks when the transformation strain satisfies certain conditions and the resulting cracks grow all the way till their tips cross over the phase boundary. Moreover the cracks continue to grow as the phase boundary traverses into the interior of the body at a uniform spacing without any instabilities. There exists an optimal value for the spacing between the cracks. We ascertain these conclusion by performing numerical simulations using finite elements.

Second, we model the effect of the semiconducting nature and dopants on cracks in ferroelectric perovskite materials, particularly barium titanate. Traditional approaches to model fracture in these materials have treated them as insulators. In reality, they are wide bandgap semiconductors with oxygen vacancies and trace impurities acting as dopants. We incorporate the space charge arising due the semiconducting effect and dopant ionization in a phase field model for the ferroelectric. We derive the governing equations by invoking the dissipation inequality over a ferroelectric domain containing a crack. This approach also yields the driving force acting on the crack. Our phase field simulations of polarization domain evolution around a crack show the accumulation of electronic charge on the crack surface making it more permeable than was previously believed so, as seen in recent experiments. We also discuss the effect the space charge has on domain formation and the crack driving force.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical challenge for the 21st century is shifting from the predominant use of fossil fuels to renewables for energy. Among many options, sunlight is the only single renewable resource with sufficient abundance to replace most or all of our current fossil energy use. However, existing photovoltaic and solar thermal technologies cannot be scaled infinitely due to the temporal and geographic intermittency of sunlight. Therefore efficient and inexpensive methods for storage of solar energy in a dense medium are needed in order to greatly increase utilization of the sun as a primary resource. For this purpose we have proposed an artificial photosynthetic system consisting of semiconductors, electrocatalysts, and polymer membranes to carry out photoelectrochemical water splitting as a method for solar fuel generation.

This dissertation describes efforts over the last five years to develop critical semiconductor and catalyst components for efficient and scalable photoelectrochemical hydrogen evolution, one of the half reactions for water splitting. We identified and developed Ni–Mo alloy and Ni2P nanoparticles as promising earth-abundant electrocatalysts for hydrogen evolution. We thoroughly characterized Ni–Mo alloys alongside Ni and Pt catalysts deposited onto planar and structured Si light absorbers for solar hydrogen generation. We sought to address several key challenges that emerged in the use of non-noble catalysts for solar fuels generation, resulting in the synthesis and characterization of Ni–Mo nanopowder for use in a new photocathode device architecture. To address the mismatch in stability between non-noble metal alloys and Si absorbers, we also synthesized and characterized p-type WSe2 as a candidate light absorber alternative to Si that is stable under acidic and alkaline conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zintl phases, a subset of intermetallic compounds characterized by covalently-bonded "sub-structures," surrounded by highly electropositive cations, exhibit precisely the characteristics desired for thermoelectric applications. The requirement that Zintl compounds satisfy the valence of anions through the formation of covalent substructures leads to many unique, complex crystal structures. Such complexity often leads to exceptionally low lattice thermal conductivity due to the containment of heat in low velocity optical modes in the phonon dispersion. To date, excellent thermoelectric properties have been demonstrated in several Zintl compounds. However, compared with the large number of known Zintl phases, very few have been investigated as thermoelectric materials.

From this pool of uninvestigated compounds, we selected a class of Zintl antimonides that share a common structural motif: anionic moieties resembling infinite chains of linked MSb4 tetrahedra, where $M$ is a triel element. The compounds discussed in this thesis (A5M2Sb6 and A3MSb3, where A = Ca or Sr and M = Al, Ga and In) crystallize as four distinct, but closely related "chain-forming" structure types. This thesis describes the thermoelectric characterization and optimization of these phases, and explores the influence of their chemistry and structure on the thermal and electronic transport properties. Due to their large unit cells, each compound exhibits exceptionally low lattice thermal conductivity (0.4 - 0.6 W/mK at 1000 K), approaching the predicted glassy minimum at high temperatures. A combination of Density Functional calculations and classical transport models were used to explain the experimentally observed electronic transport properties of each compound. Consistent with the Zintl electron counting formalism, A5M2Sb6 and A3MSb3 phases were found to have filled valence bands and exhibit intrinsic electronic properties. Doping with divalent transition metals (Zn2+ and Mn2+) on the M3+ site, or Na1+ on the A3+ site allowed for rational control of the carrier concentration and a transition towards degenerate semiconducting behavior. In optimally-doped samples, promising peak zT values between 0.4 and 0.9 were obtained, highlighting the value of continued investigations of complex Zintl phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design, synthesis and magnetic characterization of thiophene-based models for the polaronic ferromagnet are described. Synthetic strategies employing Wittig and Suzuki coupling were employed to produce polymers with extended π-systems. Oxidative doping using AsF_5 or I_2 produces radical cations (polarons) that are stable at room temperature. Magnetic characterization of the doped polymers, using SQUID-based magnetometry, indicates that in several instances ferromagnetic coupling of polarons occurs along the polymer chain. An investigation of the influence of polaron stability and delocalization on the magnitude of ferromagnetic coupling is pursued. A lower limit for mild, solution phase I_2 doping is established. A comparison of the variable temperature data of various polymers reveals that deleterious antiferromagnetic interactions are relatively insensitive to spin concentration, doping protocols or spin state. Comparison of the various polymers reveals useful design principles and suggests new directions for the development of magnetic organic materials. Novel strategies for solubilizing neutral polymeric materials in polar solvents are investigated.

The incorporation of stable bipyridinium spin-containing units into a polymeric high-spin array is explored. Preliminary results suggest that substituted diquat derivatives may serve as stable spin-containing units for the polaronic ferromagnet and are amenable to electrochemical doping. Synthetic efforts to prepare high-spin polymeric materials using viologens as a spin source have been unsuccessful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the advent of well-defined ruthenium olefin metathesis catalysts that are highly active and stable to a variety of functional groups, the synthesis of complex organic molecules and polymers is now possible; this is reviewed in Chapter 1. The majority of the rest of this thesis describes the application of these catalysts towards the synthesis of novel polymers that may be useful in biological applications and investigations into their efficacy.

A method was developed to produce polyethers by metathesis, and this is described in Chapters 2 and 3. An unsaturated 12-crown-4 analog was made by template- directed ring-closing metathesis (RCM) and utilized as a monomer for the synthesis of unsaturated polyethers by ring-opening metathesis polymerization (ROMP). The yields were high and a range of molecular weights was accessible. In a similar manner, substituted polyethers with various backbones were synthesized: polymers with benzo groups along the backbone and various concentrations of amino acids were prepared. The results from in vitro toxicity tests of the unsubstituted polyethers are considered.

The conditions necessary to synthesize polynorbornenes with pendent bioactive peptides were explored as illustrated in Chapter 4. First, the polymerization of various norbornenyl monomers substituted with glycine, alanine or penta(ethylene glycol) is described. Then, the syntheses of polymers substituted with peptides GRGD and SRN, components of a cell binding domain of fibronectin, using newly developed ruthenium initiators are discussed.

In Chapter 5, the syntheses of homopolymers and a copolymer containing GRGDS and PHSRN, the more active forms of the peptides, are described. The ability of the polymers to inhibit human dermal fibroblast cell adhesion to fibronectin was assayed using an in vitro competitive inhibition assay, and the results are discussed. It was discovered that the copoymer substituted with both GRGDS and PHSR peptides was more active than both the GRGDS-containing homopolymer and the GRGDS free peptide.

Historically, one of the drawbacks to using metathesis is the removal of the residual ruthenium at the completion of the reaction. Chapter 6 describes a method where the water soluble tris(hydroxymethyl)phosphine is utilized to facilitate the removal of residual ruthenium from RCM reaction products.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we chiefly deal with two broad classes of problems in computational materials science, determining the doping mechanism in a semiconductor and developing an extreme condition equation of state. While solving certain aspects of these questions is well-trodden ground, both require extending the reach of existing methods to fully answer them. Here we choose to build upon the framework of density functional theory (DFT) which provides an efficient means to investigate a system from a quantum mechanics description.

Zinc Phosphide (Zn3P2) could be the basis for cheap and highly efficient solar cells. Its use in this regard is limited by the difficulty in n-type doping the material. In an effort to understand the mechanism behind this, the energetics and electronic structure of intrinsic point defects in zinc phosphide are studied using generalized Kohn-Sham theory and utilizing the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional for exchange and correlation. Novel 'perturbation extrapolation' is utilized to extend the use of the computationally expensive HSE functional to this large-scale defect system. According to calculations, the formation energy of charged phosphorus interstitial defects are very low in n-type Zn3P2 and act as 'electron sinks', nullifying the desired doping and lowering the fermi-level back towards the p-type regime. Going forward, this insight provides clues to fabricating useful zinc phosphide based devices. In addition, the methodology developed for this work can be applied to further doping studies in other systems.

Accurate determination of high pressure and temperature equations of state is fundamental in a variety of fields. However, it is often very difficult to cover a wide range of temperatures and pressures in an laboratory setting. Here we develop methods to determine a multi-phase equation of state for Ta through computation. The typical means of investigating thermodynamic properties is via ’classical’ molecular dynamics where the atomic motion is calculated from Newtonian mechanics with the electronic effects abstracted away into an interatomic potential function. For our purposes, a ’first principles’ approach such as DFT is useful as a classical potential is typically valid for only a portion of the phase diagram (i.e. whatever part it has been fit to). Furthermore, for extremes of temperature and pressure quantum effects become critical to accurately capture an equation of state and are very hard to capture in even complex model potentials. This requires extending the inherently zero temperature DFT to predict the finite temperature response of the system. Statistical modelling and thermodynamic integration is used to extend our results over all phases, as well as phase-coexistence regions which are at the limits of typical DFT validity. We deliver the most comprehensive and accurate equation of state that has been done for Ta. This work also lends insights that can be applied to further equation of state work in many other materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports investigations upon weakly superconducting proximity effect bridges. These bridges, which exhibit the Josephson effects, are produced by bisecting a superconductor with a short (<1µ) region of material whose superconducting transition temperature is below that of the adjacent superconductors. These bridges are fabricated from layered refractory metal thin films whose transition temperature will depend upon the thickness ratio of the materials involved. The thickness ratio is changed in the area of the bridge to lower its transition temperature. This is done through novel photolithographic techniques described in the text, Chapter 2.

If two such proximity effect bridges are connected in parallel, they form a quantum interferometer. The maximum zero voltage current through this circuit is periodically modulated by the magnetic flux through the circuit. At a constant bias current, the modulation of the critical current produces a modulation in the dc voltage across the bridge. This change in dc voltage has been found to be the result of a change in the internal dissipation in the device. A simple model using lumped circuit theory and treating the bridges as quantum oscillators of frequency ω = 2eV/h, where V is the time average voltage across the device, has been found to adequately describe the observed voltage modulation.

The quantum interferometers have been converted to a galvanometer through the inclusion of an integral thin film current path which couples magnetic flux through the interferometer. Thus a change in signal current produces a change in the voltage across the interferometer at a constant bias current. This work is described in Chapter 3 of the text.

The sensitivity of any device incorporating proximity effect bridges will ultimately be determined by the fluctuations in their electrical parameters. He have measured the spectral power density of the voltage fluctuations in proximity effect bridges using a room temperature electronics and a liquid helium temperature transformer to match the very low (~ 0.1 Ω) impedances characteristic of these devices.

We find the voltage noise to agree quite well with that predicted by phonon noise in the normal conduction through the bridge plus a contribution from the superconducting pair current through the bridge which is proportional to the ratios of this current to the time average voltage across the bridge. The total voltage fluctuations are given by <V^2(f ) > = 4kTR^2_d I/V where R_d is the dynamic resistance, I the total current, and V the voltage across the bridge . An additional noise source appears with a strong 1/f^(n) dependence , 1.5 < n < 2, if the bridges are fabricated upon a glass substrate. This excess noise, attributed to thermodynamic temperature fluctuations in the volume of the bridge, increases dramatically on a glass substrate due to the greatly diminished thermal diffusivity of the glass as compared to sapphire.