971 resultados para Summer camps
Resumo:
Community educators have long known the value of direct experience in the learning process. Participatory action research extends this philosophy to the realm of research. This article examines the value of involving front line camp staff, members of the camp community in Appalachia as practitioner researchers with university scientists in studying the type and conditions of transformative learning in young adult camp staff. A young adult who was a camp community member assisted the researchers with methodology, data analysis, data interpretation, and dissemination of findings. This resulted in a more accurate, richer, and thicker description of the camp community member’s transformative learning experience. The benefits of involving practitioner researchers are examined, as well as promising practices for conducting participatory action research in community education environments.
Resumo:
In 1947, Switzerland was affected by a heat period of large spatial and temporal extent and rare occurrence. The heatwaves of 1947 can be compared with the events of 2003 in terms of intensity and duration. The summer of 1947 is studied based on the analysis of MeteoSwiss station data as well as the “Twentieth Century Reanalysis” (20CR) data set. Heatwaves were defined as six consecutive exceedances of the local 90th percentile of temperature. Five different heatwaves were identified which struck Switzerland during the summer of 1947. The most intense heatwave event is analysed in more detail. The meteorological situation was characterized by a high-pressure bridge over Central Europe. Based on a comparison with literature and with observations, the applicability of the 20CR dataset for the meteorological analysis of heatwave events could be demonstrated. The representation of the heat period in summer 1947 in 20CR is satisfactory when compared with station data, albeit with a temperature bias due to differences in topography. Hence, heatwaves cannot be defined using an absolute threshold. We conclude that 20CR is applicable for an overview of the meteorological patterns characterizing a heat wave but may not reproduce local details.
Resumo:
A comparison was made between two different summer grazing systems. One system was the summer component of a year-round grazing system, involving the rotational stocking of smooth bromegrass--orchardgrass--birdsfoot trefoil pastures and winter stockpiles pastures with cowcalf pairs co-grazing with stocker yearlings at .75 animal units per acre. That system was compared with a minimal land system involving the rotational stocking of smooth bromegrass--orchardgrass-- birdsfoot trefoil summer pastures with cow-calf pairs grazing at .64 animal units per acre and hay removal from 25% of the pasture. Stocker yearlings or hay removal were used as management tools to remove excess forage and optimize forage quality. Hay was removed once from three fourths of the winter stockpiled pastures and one fourth of the allocated summer pastures. Cow-calf pairs grazing in the year-round system utilized on fourth of the winter stockpile pastures due to lack of forage, whereas cow-calf pairs grazing with hay removal were supplemented with harvested hay for two weeks during the summer. Grazing system did not affect cow body weight, condition score, or daily calf weight gain. Growing animal production per acre was affected by grazing system, with the minimal land system having a higher production level.
Resumo:
A comparison was made between two different summer grazing systems at the McNay Research Farm. One system was the summer component of a year-round grazing system, involving the rotational stocking of smooth bromegrass-orchardgrass-birdsfoot trefoil pastures and winter stockpile pastures with cow-calf pairs co-grazing with stocker yearlings at .75 animal units per acre. That system was compared with a minimal land system involving the rotational stocking of smooth bromegrass-orchardgrass-birdsfoot trefoil summer pastures with cow-calf pairs grazing at .64 animal units per acre and hay removal from 25% of the pasture. Stocker yearlings or hay removal were used as management tools to remove excess forage and optimize forage quality. Hay was removed once from three fourths of the winter stockpiled pastures in 1996 (Yr. 1) and all the pasture in 1997 (Yr. 2). One hay removal occurred on one fourth of the allocated summer pastures in Year 1 and one half of the pastures in Year 2. In Year one, cow-calf pairs grazing in the year-round system utilized one fourth of the winter stockpile pastures due to a lack of forage on the summer pastures, whereas in Year 2 cowcalf pairs grazed winter stockpile pastures to remove forage as a second cutting of hay. Cow-calf pairs grazing with hay removal were supplemented with harvested hay for two weeks during the summer of Year 1 due to lack of grazable forage; in Year 2, no supplementation was needed. Grazing system did not affect cow body weight, condition score, or daily calf gain in either year. Growing animal production per acre was affected by grazing system, with the minimal land system having a higher production level in Year 1 and Year 2. The year-round system also produced more net winter forage than did the minimal land system in Year 1. Differences in forage yield and quality were only observed between winter stockpile forages of tall fescue-red clover and smooth bromegrass-red clover and summer pastures during the months of June, July, and August.
Resumo:
The drop in temperature following large volcanic eruptions has been identified as an important component of natural climate variability. However, due to the limited number of large eruptions that occurred during the period of instrumental observations, the precise amplitude of post-volcanic cooling is not well constrained. Here we present new evidence on summer temperature cooling over Europe in years following volcanic eruptions. We compile and analyze an updated network of tree-ring maximum latewood density chronologies, spanning the past nine centuries, and compare cooling signatures in this network with exceptionally long instrumental station records and state-of-the-art general circulation models. Results indicate post-volcanic June–August cooling is strongest in Northern Europe 2 years after an eruption (−0.52 ± 0.05 °C), whereas in Central Europe the temperature response is smaller and occurs 1 year after an eruption (−0.18 ± 0.07 °C). We validate these estimates by comparison with the shorter instrumental network and evaluate the statistical significance of post-volcanic summer temperature cooling in the context of natural climate variability over the past nine centuries. Finding no significant post-volcanic temperature cooling lasting longer than 2 years, our results question the ability of large eruptions to initiate long-term temperature changes through feedback mechanisms in the climate system. We discuss the implications of these findings with respect to the response seen in general circulation models and emphasize the importance of considering well-documented, annually dated eruptions when assessing the significance of volcanic forcing on continental-scale temperature variations.