936 resultados para Sudden Drawdown


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theory is presented for the adjustment of the Antarctic Circumpolar Current (ACC) and global pycnocline to a sudden and sustained change in wind forcing. The adjustment timescale is controlled by the mesoscale eddy diffusivity across the ACC, the mean width of the ACC, the surface area of the ocean basins to the north, and deep water formation in the North Atlantic. In particular, northern sinking may have the potential to shorten the timescale and reduce its sensitivity to Southern Ocean eddies, but the relative importance of northern sinking and Southern Ocean eddies cannot be determined precisely, largely due to limitations in the parameterization of northern sinking. Although it is clear that the main processes that control the adjustment timescale are those which counteract the deepening of the global pycnocline, the theory also suggests that the timescale can be subtly modified by wind forcing over the ACC and global diapycnal mixing. Results from calculations with a reduced-gravity model compare well with the theory. The multidecadal-centennial adjustment timescale implies that long observational time series will be required to detect dynamic change in the ACC due to anthropogenic forcing. The potential role of Southern Ocean mesoscale eddy activity in determining both the equilibrium state of the ACC and the timescale over which it adjusts suggests that the response to anthropogenic forcing may be different in coupled ocean-atmosphere climate models that parameterize and resolve mesoscale eddies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-pollination dominates in wheat , with a small level of out-crossing due to flowering asynchrony and male sterility. However, the timing and synchrony of male and female flowering in wheat is a crucial determinant of seed set and may be an important factor affecting gene flow and resilience to climate change. Here, a methodology is presented for assessing the timing and synchrony of flowering in wheat. From the onset of flowering until the end of anthesis, the anther and stigma activity of each floret was assessed on the first five developing ears in potted plants grown under ambient conditions and originating from cv Paragon or cvs Spark-Rialto backgrounds. At harvest maturity, seed presence, size and weight was recorded for each floret scored. The synchrony between pollen dehiscence and stigma collapse within a flower was dependent on its relative position in a spike and within a floret. Determined on the basis of synchrony within each flower, the level of pollination by pollen originating from other flowers reached approximately 30% and did not change throughout the duration of flowering. A modelling exercise parameterised by flowering observations indicated that the temporal and spatial variability of anther activity within and between spikes may influence the relative resilience of wheat to sudden, extreme climatic events which has direct relevance to predicted future climate scenarios in the UK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the record of 30 flank eruptions over the last 110 years at Nyamuragira, we have tested the relationship between the eruption dynamics and the local stress field. There are two groups of eruptions based on their duration (< 80days >) that are also clustered in space and time. We find that the eruptions fed by dykes parallel to the East African Rift Valley have longer durations (and larger volumes) than those eruptions fed by dykes with other orientations. This is compatible with a model for compressible magma transported through an elastic-walled dyke in a differential stress field from an over-pressured reservoir (Woods et al., 2006). The observed pattern of eruptive fissures is consistent with a local stress field modified by a northwest-trending, right lateral slip fault that is part of the northern transfer zone of the Kivu Basin rift segment. We have also re-tested with new data the stochastic eruption models for Nyamuragira of Burt et al. (1994). The time-predictable, pressure-threshold model remains the best fit and is consistent with the typically observed declining rate of sulphur dioxide emission during the first few days of eruption with lava emission from a depressurising, closed, crustal reservoir. The 2.4-fold increase in long-term eruption rate that occurred after 1977 is confirmed in the new analysis. Since that change, the record has been dominated by short-duration eruptions fed by dykes perpendicular to the Rift. We suggest that the intrusion of a major dyke during the 1977 volcano-tectonic event at neighbouring Nyiragongo volcano inhibited subsequent dyke formation on the southern flanks of Nyamuragira and this may also have resulted in more dykes reaching the surface elsewhere. Thus that sudden change in output was a result of a changed stress field that forced more of the deep magma supply to the surface. Another volcano-tectonic event in 2002 may also have changed the magma output rate at Nyamuragira.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper conceptualises and explores the links between cities, commerce, urbanism and cultural planning by drawing on Temple Bar in Dublin as an example of how, by linking these concepts to practice in real concrete situations urban life or urban culture can be created and/or revitalised. Temple Bar is Dublin's emerging cultural quarter, an experiment in urban revitalisation which is deliberately focused on culture and urbanism as ways of rediscovering the good city. It has attracted considerable interest from across Europe, and has secured EC funding to kick-start the process of renewal. The author was appointed by the Irish Government to prepare the area management and development strategy for Temple Bar in 1990. Wary of the dangers of property led regeneration, of the destructive impacts of sudden or cataclysmic change, the agencies in Temple Bar have deliberately adopted a strategic management approach to the area. This is referred to as 'urban stewardship', a process of looking after and respecting a place, and helping it to help itself. The paper explores whether there is a 'culture of cities' and whether it is possible to recreate an urban culture. Following Raymond Williams, an anthropological definition of culture is employed, "... a particular way of life, which expresses certain meaning and values not only in art and learning but also in institutional and ordinary behaviour". Rather than being simply an add-on to the serious concerns of economic development and the built environment, culture has both helped shape, and continues to develop in, the streets, spaces and buildings of the city.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of the Arctic stratospheric polar vortex in three chemistry–climate models (CCMs) taken from the CCMVal-2 intercomparison is examined using zonal mean and geometric-based methods. The geometric methods are employed by taking 2D moments of potential vorticity fields that are representative of the polar vortices in each of the models. This allows the vortex area, centroid location and ellipticity to be determined, as well as a measure of vortex filamentation. The first part of the study uses these diagnostics to examine how well the mean state, variability and extreme variability of the polar vortices are represented in CCMs compared to ERA-40 reanalysis data, and in particular for the UMUKCA-METO, NIWA-SOCOL and CCSR/NIES models. The second part of the study assesses how the vortices are predicted to change in terms of the frequency of sudden stratospheric warmings and their general structure over the period 1960–2100. In general, it is found that the vortices are climatologically too far poleward in the CCMs and produce too few large-scale filamentation events. Only a small increase is observed in the frequency of sudden stratospheric warming events from the mean of the CCMVal-2 models, but the distribution of extreme variability throughout the winter period is shown to change towards the end of the twentyfirst century.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weekly monitoring of profiles of student performances on formative and summative coursework throughout the year can be used to quickly identify those who need additional help, possibly due to acute and sudden-onset problems. Such an early-warning system can help retention, but also assist students in overcoming problems early on, thus helping them fulfil their potential in the long run. We have developed a simple approach for the automatic monitoring of student mark profiles for individual modules, which we intend to trial in the near future. Its ease of implementation means that it can be used for very large cohorts with little additional effort when marks are already collected and recorded on a spreadsheet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mesospheric response to the 2002 Antarctic Stratospheric Sudden Warming (SSW) is analysed using the Canadian Middle Atmosphere Model Data Assimilation System (CMAM-DAS), where it represents a vertical propagation of information from the observations into the data-free mesosphere. The CMAM-DAS simulates a cooling in the lowest part of the mesosphere which is accomplished by resolved motions, but which is extended to the mid- to upper mesosphere by the response of the model's non-orographic gravity-wave drag parameterization to the change in zonal winds. The basic mechanism is that elucidated by Holton consisting of a net eastward wave-drag anomaly in the mesosphere during the SSW, although in this case there is a net upwelling in the polar mesosphere. Since the zonal-mean mesospheric response is shown to be predictable, this demonstrates that variations in the mesospheric state can be slaved to the lower atmosphere through gravity-wave drag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The existence of hand-centred visual processing has long been established in the macaque premotor cortex. These hand-centred mechanisms have been thought to play some general role in the sensory guidance of movements towards objects, or, more recently, in the sensory guidance of object avoidance movements. We suggest that these hand-centred mechanisms play a specific and prominent role in the rapid selection and control of manual actions following sudden changes in the properties of the objects relevant for hand-object interactions. We discuss recent anatomical and physiological evidence from human and non-human primates, which indicates the existence of rapid processing of visual information for hand-object interactions. This new evidence demonstrates how several stages of the hierarchical visual processing system may be bypassed, feeding the motor system with hand-related visual inputs within just 70 ms following a sudden event. This time window is early enough, and this processing rapid enough, to allow the generation and control of rapid hand-centred avoidance and acquisitive actions, for aversive and desired objects, respectively

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With extreme variability of the Arctic polar vortex being a key link for stratosphere–troposphere influences, its evolution into the twenty-first century is important for projections of changing surface climate in response to greenhouse gases. Variability of the stratospheric vortex is examined using a state-of-the-art climate model and a suite of specifically developed vortex diagnostics. The model has a fully coupled ocean and a fully resolved stratosphere. Analysis of the standard stratospheric zonal mean wind diagnostic shows no significant increase over the twenty-first century in the number of major sudden stratospheric warmings (SSWs) from its historical value of 0.7 events per decade, although the monthly distribution of SSWs does vary, with events becoming more evenly dispersed throughout the winter. However, further analyses using geometric-based vortex diagnostics show that the vortex mean state becomes weaker, and the vortex centroid is climatologically more equatorward by up to 2.5°, especially during early winter. The results using these diagnostics not only characterize the vortex structure and evolution but also emphasize the need for vortex-centric diagnostics over zonally averaged measures. Finally, vortex variability is subdivided into wave-1 (displaced) and -2 (split) components, and it is implied that vortex displacement events increase in frequency under climate change, whereas little change is observed in splitting events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characteristics of the boundary layer separating a turbulence region from an irrotational (or non-turbulent) flow region are investigated using rapid distortion theory (RDT). The turbulence region is approximated as homogeneous and isotropic far away from the bounding turbulent/non-turbulent (T/NT) interface, which is assumed to remain approximately flat. Inviscid effects resulting from the continuity of the normal velocity and pressure at the interface, in addition to viscous effects resulting from the continuity of the tangential velocity and shear stress, are taken into account by considering a sudden insertion of the T/NT interface, in the absence of mean shear. Profiles of the velocity variances, turbulent kinetic energy (TKE), viscous dissipation rate (epsilon), turbulence length scales, and pressure statistics are derived, showing an excellent agreement with results from direct numerical simulations (DNS). Interestingly, the normalized inviscid flow statistics at the T/NT interface do not depend on the form of the assumed TKE spectrum. Outside the turbulent region, where the flow is irrotational (except inside a thin viscous boundary layer), epsilon decays as z^{-6}, where z is the distance from the T/NT interface. The mean pressure distribution is calculated using RDT, and exhibits a decrease towards the turbulence region due to the associated velocity fluctuations, consistent with the generation of a mean entrainment velocity. The vorticity variance and epsilon display large maxima at the T/NT interface due to the inviscid discontinuities of the tangential velocity variances existing there, and these maxima are quantitatively related to the thickness delta of the viscous boundary layer (VBL). For an equilibrium VBL, the RDT analysis suggests that delta ~ eta (where eta is the Kolmogorov microscale), which is consistent with the scaling law identified in a very recent DNS study for shear-free T/NT interfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well established that variations in polar stratospheric winds can affect mesospheric temperatures through changes in the filtering of gravity wave fluxes, which drive a residual circulation in the mesosphere. The Canadian Middle Atmosphere Model(CMAM) is used to examine this vertical coupling mechanism in the context of the mesospheric response to the Antarctic ozone hole. It is found that the response differs significantly between late spring and early summer, because of a changing balance between the competing effects of parametrised gravity wavedrag (GWD)and changes in resolved wave drag local to the mesosphere. In late spring, the strengthened stratospheric westerlies arising from the ozone hole lead to reduced eastward GWD in the mesosphere and a warming of the polar mesosphere, just as in the well known mesospheric response to sudden stratospheric warmings, but with an opposite sign.In early summer, with easterly flow revailing over most of the polar stratosphere,the strengthened easterly wind shear within the mesosphere arising from the west ward GWD anomaly induces a positive resolved wave drag anomaly through baroclinic instability. The polar cooling induced by this process completely dominates the upper mesospheric response to the ozone hole in early summer. Consequences for the past and future evolution of noctilucent clouds are discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel diagnostic tool is presented, based on polar-cap temperature anomalies, for visualizing daily variability of the Arctic stratospheric polar vortex over multiple decades. This visualization illustrates the ubiquity of extended-time-scale recoveries from stratospheric sudden warmings, termed here polar-night jet oscillation (PJO) events. These are characterized by an anomalously warm polar lower stratosphere that persists for several months. Following the initial warming, a cold anomaly forms in the middle stratosphere, as does an anomalously high stratopause, both of which descend while the lower-stratospheric anomaly persists. These events are characterized in four datasets: Microwave Limb Sounder (MLS) temperature observations; the 40-yr ECMWF Re-Analysis (ERA-40) and Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalyses; and an ensemble of three 150-yr simulations from the Canadian Middle Atmosphere Model. The statistics of PJO events in the model are found to agree very closely with those of the observations and reanalyses. The time scale for the recovery of the polar vortex following sudden warmings correlates strongly with the depth to which the warming initially descends. PJO events occur following roughly half of all major sudden warmings and are associated with an extended period of suppressed wave-activity fluxes entering the polar vortex. They follow vortex splits more frequently than they do vortex displacements. They are also related to weak vortex events as identified by the northern annular mode; in particular, those weak vortex events followed by a PJO event show a stronger tropospheric response. The long time scales, predominantly radiative dynamics, and tropospheric influence of PJO events suggest that they represent an important source of conditional skill in seasonal forecasting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the stratosphere, chemical tracers are drawn systematically from the equator to the pole. This observed Brewer–Dobson circulation is driven by wave drag, which in the stratosphere arises mainly from the breaking and dissipation of planetary-scale Rossby waves. While the overall sense of the circulation follows from fundamental physical principles, a quantitative theoretical understanding of the connection between wave drag and Lagrangian transport is limited to linear, small-amplitude waves. However, planetary waves in the stratosphere generally grow to a large amplitude and break in a strongly nonlinear fashion. This paper addresses the connection between stratospheric wave drag and Lagrangian transport in the presence of strong nonlinearity, using a mechanistic three-dimensional primitive equations model together with offline particle advection. Attention is deliberately focused on a weak forcing regime, such that sudden warmings do not occur and a quasi-steady state is reached, in order to examine this question in the cleanest possible context. Wave drag is directly linked to the transformed Eulerian mean (TEM) circulation, which is often used as a surrogate for mean Lagrangian motion. The results show that the correspondence between the TEM and mean Lagrangian velocities is quantitatively excellent in regions of linear, nonbreaking waves (i.e., outside the surf zone), where streamlines are not closed. Within the surf zone, where streamlines are closed and meridional particle displacements are large, the agreement between the vertical components of the two velocity fields is still remarkably good, especially wherever particle paths are coherent so that diabatic dispersion is minimized. However, in this region the meridional mean Lagrangian velocity bears little relation to the meridional TEM velocity, and reflects more the kinematics of mixing within and across the edges of the surf zone. The results from the mechanistic model are compared with those from the Canadian Middle Atmosphere Model to test the robustness of the conclusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present ozone loss estimated from airborne measurements taken during January–February and March in the Arctic winter 2002/2003. The first half of the winter was characterized by unusually cold temperatures and the second half by a major stratospheric sudden warming around 15–18 January 2003. The potential vorticity maps show a vortex split in the lower stratosphere during the major warming (MW) in late January and during the minor warming in mid-February due to wave 1 amplification. However, the warming can be termed as a vortex displacement event as there was no vortex split during the MW period at 10 hPa. Very low temperatures, large areas of polar stratospheric clouds (PSCs), and high chlorine activation triggered significant ozone loss in the early winter, as the vortex moved to the midlatitude regions. The ozone depletion derived from the ASUR measurements sampled inside the vortex, in conjunction with the Mimosa-Chim model tracer, shows a maximum of 1.3 ± 0.2 ppmv at 450–500 K by late March. The partial column loss derived from the ASUR ozone profiles reaches up to 61 ± 4 DU in 400–550 K in the same period. The evolution of ozone and ozone loss assessed from the ASUR measurements is in very good agreement with POAM observations. The reduction in ozone estimated from the POAM measurements shows a similar maximum of 1.3 ± 0.2 ppmv at 400–500 K or 63 ± 4 DU in 400–550 K in late March. Our study reveals that the Arctic winter 2002/2003 was unique as it had three minor warmings and a MW, yet showed large loss in ozone. No such feature was observed in any other Arctic winter in the 1989–2010 period. In addition, an unusually large ozone loss in December, around 0.5 ± 0.2 ppmv at 450–500 K or 12 ± 1 DU in 400–550 K, was estimated for the first time in the Arctic. A careful and detailed diagnosis with all available published results for this winter exhibits an average ozone loss of 1.5 ± 0.3 ppmv at 450–500 K or 65 ± 5 DU in 400–550 K by the end of March, which exactly matches the ozone depletion derived from the ASUR, POAM and model data. The early ozone loss together with considerable loss afterwards put the warm Arctic winter 2002/2003 amongst the moderately cold winters in terms of the significance of the ozone loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of stratospheric radiative damping time scales on stratospheric variability and on stratosphere–troposphere coupling is investigated in a simplified global circulation model by modifying the vertical profile of radiative damping in the stratosphere while holding it fixed in the troposphere. Perpetual-January conditions are imposed, with sinusoidal topography of zonal wavenumber 1 or 2. The depth and duration of the simulated sudden stratospheric warmings closely track the lower-stratospheric radiative time scales. Simulations with the most realistic profiles of radiative damping exhibit extended time-scale recoveries analogous to polar-night jet oscillation (PJO) events, which are observed to follow sufficiently deep stratospheric warmings. These events are characterized by weak lower-stratospheric winds and enhanced stability near the tropopause, which persist for up to 3 months following the initial warming. They are obtained with both wave-1 and wave-2 topography. Planetary-scale Eliassen–Palm (EP) fluxes entering the vortex are also suppressed, which is in agreement with observed PJO events. Consistent with previous studies, the tropospheric jets shift equatorward in response to the warmings. The duration of the shift is closely correlated with the period of enhanced stability. The magnitude of the shift in these runs, however, is sensitive only to the zonal wavenumber of the topography. Although the shift is sustained primarily by synoptic-scale eddies, the net effect of the topographic form drag and the planetary-scale fluxes is not negligible; they damp the surface wind response but enhance the vertical shear. The tropospheric response may also reduce the generation of planetary waves, further extending the stratospheric dynamical time scales.