939 resultados para Structural Constraints of Kind (Min, Max)
Resumo:
The structure of the (2 X 1)CO-Pd(110) surface phase has been determined by LEED intensity analysis. The CO molecule is found to be adsorbed in an atop site, tilted by 11-degrees +/- 4-degrees with respect to the surface normal, with a C-O bond length of 1.16 +/- 0.04 angstrom. Interestingly, the C-O vibrational frequency for this system (2003 cm-1) is virtually identical to the frequency observed for the (2 X 1)CO-Ni(110) surface phase (1998 cm-1) which a previous LEED study has shown involves bridge bound CO molecules. The result indicates that care must be taken in assigning site symmetries on the basis of C-O stretching frequencies alone.
Resumo:
Molecularly adsorbed CO on Pd{110} has been shown (R. Raval et al., Chem. Phys. Lett. 167 (1990) 391, ref. [1]) to induce a substantial reconstruction of the surface in the coverage range 0.3 <theta less-than-or-equal-to 0.75. Throughout this coverage range, the adsorbate-covered reconstructed surface exhibits a (4 x 2) LEED pattern. However, the exact nature of the reconstruction remains uncertain. We have conducted a LEED I(E) "fingerprinting" analysis of the CO/Pd{110}-(4 x 2) structure in order to establish the type of reconstruction induced in the metal surface. This study shows that the LEED I(E) profiles of the integral order and appropriate half-order beams of the CO/Pd{110}-(4 x 2) pattern closely resemble the I(E) profiles theoretically calculated for a Pd{110}-(1 x 2) missing-row structure. Additionally, there is a strong resemblance to the experimental LEED I(E) profiles for the Cs/Pd{110}-(1 x 2) structure which has also been shown to exhibit the missing-row structure. On the basis of this evidence we conclude that the CO/Pd{110}-(4 x 2) LEED pattern arises from a missing-row reconstruction of the Pd{110} surface which gives rise to a strong underlying (1 x 2) pattern plus a poorly ordered CO overlayer which produces weak, diffuse fourth-order spots in the LEED pattern.
Resumo:
In this paper the temperature and pressure induced paramagnetic switching of cobalt (II) complex in binary mixture of phosphonium based ionic liquid [P6,6,6,14]SCN and [Co(NCS)2], is reported. This arises from a structural change in the coordination of the cobalt (II) center from tetrahedral [Co(NCS)4]2- to octahedral [Co(NCS)6]4- when mobile thiocyanate ions are added. These properties are reflected in the abrupt change of conductivity behavior of the magnetic ionic liquid. Therefore, as demonstrated herein the reversible switching in coordination of cobalt from tetrahedral to octahedral can be easily monitored at ambient as well as elevated pressure by tracking the dc-conductivity changes.
Resumo:
Doutoramento em Bioquímica
Resumo:
Helicobacter pylori is a bacterial pathogen that affects more than half of the world’s population with gastro-intestinal diseases and is associated with gastric cancer. The cell surface of H. pylori is decorated with lipopolysaccharides (LPSs) composed of three distinct regions: a variable polysaccharide moiety (O-chain), a structurally conserved core oligosaccharide, and a lipid A region that anchors the LPS to the cell membrane. The O-chain of H. pylori LPS, exhibits unique oligosaccharide structures, such as Lewis (Le) antigens, similar to those present in the gastric mucosa and are involved in interactions with the host. Glucan, heptoglycan, and riban domains are present in the outer core region of some H. pylori LPSs. Amylose-like glycans and mannans are also constituents of some H. pylori strains, possibly co-expressed with LPSs. The complexity of H. pylori LPSs has hampered the establishment of accurate structure-function relationships in interactions with the host, and the design of carbohydrate-based therapeutics, such as vaccines. Carbohydrate microarrays are recent powerful and sensitive tools for studying carbohydrate antigens and, since their emergence, are providing insights into the function of carbohydrates and their involvement in pathogen-host interactions. The major goals of this thesis were the structural analysis of LPSs from H. pylori strains isolated from gastric biopsies of symptomatic Portuguese patients and the construction of a novel pathogen carbohydrate microarray of these LPSs (H. pylori LPS microarray) for interaction studies with proteins. LPSs were extracted from the cell surface of five H. pylori clinical isolates and one NCTC strain (26695) by phenol/water method, fractionated by size exclusion chromatography and analysed by gas chromatography coupled to mass spectrometry. The oligosaccharides released after mild acid treatment of the LPS were analysed by electrospray mass spectrometry. In addition to the conserved core oligosaccharide moieties, structural analyses revealed the presence of type-2 Lex and Ley antigens and N-acetyllactosamine (LacNAc) sequences, typically found in H. pylori strains. Also, the presence of O-6 linked glucose residues, particularly in LPSs from strains 2191 and NCTC 26695, pointed out to the expression of a 6-glucan. Other structural domains, namely ribans, composed of O-2 linked ribofuranose residues were observed in the LPS of most of H. pylori clinical isolates. For the LPS from strain 14382, large amounts of O-3 linked galactose units, pointing to the occurrence of a galactan, a domain recently identified in the LPS of another H. pylori strain. A particular feature to the LPSs from strains 2191 and CI-117 was the detection of large amounts of O-4 linked N-acetylglucosamine (GlcNAc) residues, suggesting the presence of chitin-like glycans, which to our knowledge have not been described for H. pylori strains. For the construction of the H. pylori LPS microarray, the structurally analysed LPSs, as well as LPS-derived oligosaccharide fractions, prepared as neoglycolipid (NGL) probes were noncovalently immobilized onto nitrocellulosecoated glass slides. These were printed together with NGLs of selected sequence defined oligosaccharides, bacterial LPSs and polysaccharides. The H. pylori LPS microarray was probed for recognition with carbohydratebinding proteins (CBPs) of known specificity. These included Le and blood group-related monoclonal antibodies (mAbs), plant lectins, a carbohydratebinding module (CBM) and the mammalian immune receptors DC-SIGN and Dectin-1. The analysis of these CBPs provided new information that complemented the structural analyses and was valuable in the quality control of the constructed microarray. Microarray analysis revealed the occurrence of type-2 Lex and Ley, but not type-1 Lea or Leb antigens, supporting the results obtained in the structural analysis. Furthermore, the H. pylori LPSs were recognised by DC-SIGN, a mammalian lectin known to interact with this bacterium through fucosylated Le epitopes expressed in its LPSs. The -fucose-specific lectin UEA-I, showed restricted binding to probes containing type-2 blood group H sequence and to the LPSs from strains CI-117 and 14382. The presence of H-type-2, as well Htype- 1 in the LPSs from these strains, was confirmed using specific mAbs. Although H-type-1 determinant has been reported for H. pylori LPSs, this is the first report of the presence of H-type-2 determinant. Microarray analysis also revealed that plant lectins known to bind 4-linked GlcNAc chitin oligosaccharide sequences bound H. pylori LPSs. STL, which exhibited restricted and strong binding to 4GlcNAc tri- and pentasaccharides, differentially recognised the LPS from the strain CI-117. The chitin sequences recognised in the LPS could be internal, as no binding was detected to this LPS with WGA, known to be specific for nonreducing terminal of 4GlcNAc sequence. Analyses of the H. pylori LPSs by SDS-PAGE and Western blot with STL provided further evidence for the presence of these novel domains in the O-chain region of this LPS. H. pylori LPS microarray was also applied to analysis of two human sera. The first was from a case infected with H. pylori (H. pylori+ CI-5) and the second was from a non-infected control.The analysis revealed a higher IgG-reactivity towards H. pylori LPSs in the H. pylori+ serum, than the control serum. A specific IgG response was observed to the LPS isolated from the CI-5 strain, which caused the infection. The present thesis has contributed to extension of current knowledge on chemical structures of LPS from H. pylori clinical isolates. Furthermore, the H. pylori LPS microarray constructed enabled the study of interactions with host proteins and showed promise as a tool in serological studies of H. pyloriinfected individuals. Thus, it is anticipated that the use of these complementary approaches may contribute to a better understanding of the molecular complexity of the LPSs and their role in pathogenesis.
Resumo:
Tese de doutoramento, Ciências Biomédicas (Bioquímica Médica), Universidade de Lisboa, Faculdade de Medicina, 2016
Resumo:
TiO2 nanorod films have been deposited on ITO substrates by dc reactive magnetron sputtering technique. The structures of these nanorod films were modified by the variation of the oxygen pressure during the sputtering process. Although all these TiO2 nanorod films deposited at different oxygen pressures show an anatase structure, the orientation of the nanorod films varies with the oxygen pressure. Only a very weak (101) diffraction peak can be observed for the TiO2 nanorod film prepared at low oxygen pressure. However, as the oxygen pressure is increased, the (220) diffraction peak appears and the intensity of this diffraction peak is increased with the oxygen pressure. The results of the SEM show that these TiO2 nanorods are perpendicular to the ITO substrate. At low oxygen pressure, these sputtered TiO2 nanorods stick together and have a dense structure. As the oxygen pressure is increased, these sputtered TiO2 nanorods get separated gradually and have a porous structure. The optical transmittance of these TiO2 nanorod films has been measured and then fitted by OJL model. The porosities of the TiO2 nanorod films have been calculated. The TiO2 nanorod film prepared at high oxygen pressure shows a high porosity. The dye-sensitized solar cells (DSSCs) have been assembled using these TiO2 nanorod films prepared at different oxygen pressures as photoelectrode. The optimum performance was achieved for the DSSC using the TiO2 nanorod film with the highest (220) diffraction peak and the highest porosity.
Resumo:
Biophysical Chemistry 110 (2004) 83–92
Resumo:
New cationic ruthenium(II) complexes with the formula [Ru(eta(5)-C5H5)(LL)(1-BuIm)] [Z], with (LL) = 2PPh(3) or DPPE, and Z = CF3SO3-, PF6-, BPh4-, have been synthesized and fully characterized. Spectroscopic and electrochemical studies revealed that the electronic properties of the coordinated 1-butylimidazole were clearly influenced by the nature of the phosphane coligands (LL) and also by the different counter ions. The solid state structures of the six complexes determined by X-ray crystallographic studies, confirmed the expected distorted three-legged piano stool structure. However the geometry of the 1-butylimidazole ligand was found considerably different in all six compounds, being governed by the stereochemistry of the mono and bidentate coligands (PPh3 or DPPE).
Resumo:
Dissertation presented to obtain a Doctoral Degree in Biology by Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
If an opening to the argument of this dissertation is of imperative necessity, one might tentatively begin with Herbert Quain, born in Roscommon, Ireland, author of the novels The God of the Labyrinth (1933) and April March (1936), the short-story collection Statements (1939), and the play The Secret Mirror (undated). To a certain extent, this idiosyncratic Irish author, who hailed from the ancient province of Connacht, may be regarded as a forerunner of the type of novels which will be considered in this dissertation. Quain was, after all, the unconscious creator of one of the first structurally disintegrated novels in the history of western literature, April March. His first novel, The God of the Labyrinth, also exhibits elements which are characteristic of structurally disintegrated fiction, for it provides the reader with two possible solutions to a mysterious crime. As a matter of fact, one might suggest that Quain’s debut novel offers the reader the possibility to ignore the solution to the crime and carry on living his or her readerly life, turning a blind eye to the novel itself. It may hence be argued that Quain’s first novel is in fact a compound of three different novels. It is self-evident that the structure of Quain’s oeuvre is of an experimental nature, combining geometrical precision with authorial innovation, and one finds in it a higher consideration for formal defiance than for the text itself. In other words, the means of expression are the concern of the author and not, interestingly, the textual content. April March, for example, is a novel which regresses back into itself, its first chapter focussing on an evening which is preceded by three possible evenings which, in turn, are each preceded by three other, dissimilar, possible evenings. It is a novel of backward-movement, and it is due to this process of branching regression that April March contains within itself at least nine possible novels. Structure, therefore, paradoxically controls the text, for it allows the text to expand or contract under its formal limitations. In other words, the formal aspects of the novel, usually associated with the restrictive device of a superior design, contribute to a liberation of the novel’s discourse. It is paradoxical only in the sense that the idea of structure necessarily entails the fixation of a narrative skeleton that determines how plot and discourse interact, something which Quain flouts for the purposes of innovation. In this sense, April March’s convoluted structure allows for multiple readings and interpretations of the same text, consciously germinating narratives within itself, producing different texts from a single, unique source. Thus, text and means of expression are bonded by a structural design that, rather than limiting, liberates the text of the novel.
Resumo:
In 1903, the eastern slope of Turtle Mountain (Alberta) was affected by a 30 M m3-rockslide named Frank Slide that resulted in more than 70 casualties. Assuming that the main discontinuity sets, including bedding, control part of the slope morphology, the structural features of Turtle Mountain were investigated using a digital elevation model (DEM). Using new landscape analysis techniques, we have identified three main joint and fault sets. These results are in agreement with those sets identified through field observations. Landscape analysis techniques, using a DEM, confirm and refine the most recent geology model of the Frank Slide. The rockslide was initiated along bedding and a fault at the base of the slope and propagated up slope by a regressive process following a surface composed of pre-existing discontinuities. The DEM analysis also permits the identification of important geological structures along the 1903 slide scar. Based on the so called Sloping Local Base Level (SLBL) an estimation was made of the present unstable volumes in the main scar delimited by the cracks, and around the south area of the scar (South Peak). The SLBL is a method permitting a geometric interpretation of the failure surface based on a DEM. Finally we propose a failure mechanism permitting the progressive failure of the rock mass that considers gentle dipping wedges (30°). The prisms or wedges defined by two discontinuity sets permit the creation of a failure surface by progressive failure. Such structures are more commonly observed in recent rockslides. This method is efficient and is recommended as a preliminary analysis prior to field investigation.
Resumo:
The Wechsler Intelligence Scale for Children-fourth edition (i.e. WISC-IV) recognizes a four-factor scoring structure in addition to the Full Scale IQ (FSIQ) score: Verbal Comprehension (VCI), Perceptual Reasoning (PRI), Working Memory (WMI), and Processing Speed (PSI) indices. However, several authors suggested that models based on the Cattell-Horn-Carroll (CHC) theory with 5 or 6 factors provided a better fit to the data than does the current four-factor solution. By comparing the current four-factor structure to CHC-based models, this research aimed to investigate the factorial structure and the constructs underlying the WISC-IV subtest scores with French-speaking Swiss children (N = 249). To deal with this goal, confirmatory factor analyses (CFAs) were conducted. Results showed that a CHC-based model with five factors better fitted the French-Swiss data than did the current WISC-IV scoring structure. All together, these results support the hypothesis of the appropriateness of the CHC model with French-speaking children.
Resumo:
The membrane organization of the alpha-subunit of purified (Na+ + K+)-ATPase ((Na+ + K+)-dependent adenosine triphosphate phosphorylase, EC 3.6.1.3) and of the microsomal enzyme of the kidney of the toad Bufo marinus was compared by using controlled trypsinolysis. With both enzyme preparations, digestions performed in the presence of Na+ yielded a 73 kDa fragment and in the presence of K+ a 56 kDa, a 40 kDa and small amounts of a 83 kDa fragment from the 96 kDa alpha-subunit. In contrast to mammalian preparations (Jørgensen, P.L. (1975) Biochim. Biophys. Acta 401, 399-415), trypsinolysis of the purified amphibian enzyme led to a biphasic loss of (Na+ + K+)-ATPase activity in the presence of both Na+ and K+. These data could be correlated with an early rapid cleavage of 3 kDa from the alpha-subunit in both ionic conditions and a slower degradation of the remaining 93 kDa polypeptide. On the other hand, in the microsomal enzyme, a 3 kDa shift of the alpha-subunit could only be produced in the presence of Na+. Our data indicate that (1) purification of the amphibian enzyme with detergent does not influence the overall topology of the alpha-subunit but produces a distinct structural alteration of its N-terminus and (2) the amphibian kidney enzyme responds to cations with similar conformational transitions as the mammalian kidney enzyme. In addition, anti alpha-serum used on digested enzyme samples revealed on immunoblots that the 40 kDa fragment was better recognized than the 56 kDa fragment. It is concluded that the NH2-terminal of the alpha-subunit contains more antigenic sites than the COOH-terminal domain in agreement with the results of Farley et al. (Farley, R.A., Ochoa, G.T. and Kudrow, A. (1986) Am. J. Physiol. 250, C896-C906).