953 resultados para Stream ciphers
Resumo:
Potential denitrification rates were measured using the acetylene block method, in sediments collected from streams in the sub-tropical, south-east Queensland region of Australia. Our aim was to estimate how much nitrogen could be removed from lotic systems by denitrification at the regional scale. Denitrification measured at 65 sites in August and September from a catchment of 22700 km(2) was extrapolated to all streams and rivers in the region based on the sediment area available for denitrification. Denitrification rates ranged between 4 and 950 mumol N m(-2) h(-1), with most sites having rates below 150 mumol N m(-2) h(-1). Based on these results, the current study estimates that a total of 305 t of nitrogen could be denitrified per year from all streams and rivers in the region, representing 6% of the total annual nitrogen load from surrounding land use. During baseflow conditions, when nitrogen loads to streams are low, the proportion of nitrogen removed through denitrification would be substantially higher, in some cases removing 100% of the nitrogen load. It is proposed that denitrification is an important process maintaining low concentrations of dissolved inorganic nitrogen under baseflow conditions and is therefore likely to enhance nitrogen limitation of primary production in this region.
Resumo:
We tested direct and indirect measures of benthic metabolism as indicators of stream ecosystem health across a known agricultural land-use disturbance gradient in southeast Queensland, Australia. Gross primary production (GPP) and respiration (R-24) in benthic chambers in cobble and sediment habitats, algal biomass (as chlorophyll a) from cobbles and sediment cores, algal biomass accrual on artificial substrates and stable carbon isotope ratios of aquatic plants and benthic sediments were measured at 53 stream sites, ranging from undisturbed subtropical rainforest to catchments where improved pasture and intensive cropping are major land-uses. Rates of benthic GPP and R-24 varied by more than two orders of magnitude across the study gradient. Generalised linear regression modelling explained 80% or more of the variation in these two indicators when sediment and cobble substrate dominated sites were considered separately, and both catchment and reach scale descriptors of the disturbance gradient were important in explaining this variation. Model fits were poor for net daily benthic metabolism (NDM) and production to respiration ratio (P/R). Algal biomass accrual on artificial substrate and stable carbon isotope ratios of aquatic plants and benthic sediment were the best of the indirect indicators, with regression model R-2 values of 50% or greater. Model fits were poor for algal biomass on natural substrates for cobble sites and all sites. None of these indirect measures of benthic metabolism was a good surrogate for measured GPP. Direct measures of benthic metabolism, GPP and R-24, and several indirect measures were good indicators of stream ecosystem health and are recommended in assessing process-related responses to riparian and catchment land use change and the success of ecosystem rehabilitation actions.
Resumo:
The planning and management of water resources in the Pioneer Valley, north-eastern Australia requires a tool for assessing the impact of groundwater and stream abstractions on water supply reliabilities and environmental flows in Sandy Creek (the main surface water system studied). Consequently, a fully coupled stream-aquifer model has been constructed using the code MODHMS, calibrated to near-stream observations of watertable behaviour and multiple components of gauged stream flow. This model has been tested using other methods of estimation, including stream depletion analysis and radon isotope tracer sampling. The coarseness of spatial discretisation, which is required for practical reasons of computational efficiency, limits the model's capacity to simulate small-scale processes (e.g., near-stream groundwater pumping, bank storage effects), and alternative approaches are required to complement the model's range of applicability. Model predictions of groundwater influx to Sandy Creek are compared with baseflow estimates from three different hydrograph separation techniques, which were found to be unable to reflect the dynamics of Sandy Creek stream-aquifer interactions. The model was also used to infer changes in the water balance of the system caused by historical land use change. This led to constraints on the recharge distribution which can be implemented to improve model calibration performance. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In many online applications, we need to maintain quantile statistics for a sliding window on a data stream. The sliding windows in natural form are defined as the most recent N data items. In this paper, we study the problem of estimating quantiles over other types of sliding windows. We present a uniform framework to process quantile queries for time constrained and filter based sliding windows. Our algorithm makes one pass on the data stream and maintains an E-approximate summary. It uses O((1)/(epsilon2) log(2) epsilonN) space where N is the number of data items in the window. We extend this framework to further process generalized constrained sliding window queries and proved that our technique is applicable for flexible window settings. Our performance study indicates that the space required in practice is much less than the given theoretical bound and the algorithm supports high speed data streams.
Resumo:
The tendency to hear a tone sequence as 2 or more streams (segregated) builds up, but a sudden change in properties can reset the percept to 1 stream (integrated). This effect has not hitherto been explored using an objective measure of streaming. Stimuli comprised a 2.0-s fixed-frequency inducer followed by a 0.6-s test sequence of alternating pure tones (3 low [L]-high [H] cycles). Listeners compared intervals for which the test sequence was either isochronous or the H tones were slightly delayed. Resetting of segregation should make identifying the anisochronous interval easier. The HL frequency separation was varied (0-12 semitones), and properties of the inducer and test sequence were set to the same or different values. Inducer properties manipulated were frequency, number of onsets (several short bursts vs. one continuous tone), tone:silence ratio (short vs. extended bursts), level, and lateralization. All differences between the inducer and the L tones reduced temporal discrimination thresholds toward those for the no-inducer case, including properties shown previously not to affect segregation greatly. Overall, it is concluded that abrupt changes in a sequence cause resetting and improve subsequent temporal discrimination. (PsycINFO Database Record © 2009 APA, all rights reserved)
Resumo:
Previous claims that auditory stream segregation occurs in cochlear implant listeners are based on limited evidence. In experiment 1, eight listeners heard tones presented in a 30-s repeating ABA-sequence, with frequencies matching the centre frequencies of the implant's 22 electrodes. Tone A always stimulated electrode 11 (centre of the array); tone B stimulated one of the others. Tone repetition times (TRTs) from 50 to 200 ms were used. Listeners reported when they heard one or two streams. The proportion of time that each sequence was reported as segregated was consistently greater with increased electrode separation. However, TRT had no significant effect, and the perceptual reversals typical of normal-hearing listeners rarely occurred. The results may reflect channel discrimination rather than stream segregation. In experiment 2, six listeners performed a pitch-ranking task using tone pairs (reference = electrode 11). Listeners reported which tone was higher in pitch (or brighter in timbre) and their confidence in the pitch judgement. Similarities were observed in the individual pattern of results for reported segregation and pitch discrimination. Many implant listeners may show little or no sign of automatic stream segregation owing to the reduced perceptual space within which sounds can differ from one another. © 2006 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate a novel dual-wavelength erbium-fiber laser that uses a single nonlinear-optical loop mirror modulator to simultaneously modelock two cavities with chirped fiber Bragg gratings as end mirrors. We show that this configuration produces synchronized soliton pulse trains with an ultra-low RMS inter-pulse-stream timing jitter of 620 fs enabling application to multiwavelength systems at data rates in excess of 130 Gb/s.
Resumo:
The evidence that cochlear implant listeners routinely experience stream segregation is limited and equivocal. Streaming in these listeners was explored using tone sequences matched to the center frequencies of the implant’s 22 electrodes. Experiment 1 measured temporal discrimination for short (ABA triplet) and longer (12 AB cycles) sequences (tone/silence durations = 60/40 ms). Tone A stimulated electrode 11; tone B stimulated one of 14 electrodes. On each trial, one sequence remained isochronous, and tone B was delayed in the other; listeners had to identify the anisochronous interval. The delay was introduced in the second half of the longer sequences. Prior build-up of streaming should cause thresholds to rise more steeply with increasing electrode separation, but no interaction with sequence length was found. Experiment 2 required listeners to identify which of two target sequences was present when interleaved with distractors (tone/silence durations = 120/80 ms). Accuracy was high for isolated targets, but most listeners performed near chance when loudness-matched distractors were added, even when remote from the target. Only a substantial reduction in distractor level improved performance, and this effect did not interact with target-distractor separation. These results indicate that implantees often do not achieve stream segregation, even in relatively unchallenging tasks.
Resumo:
The factors influencing the stream segregation of discrete tones and the perceived continuity of discrete tones as continuing through an interrupting masker are well understood as separate phenomena. Two experiments tested whether perceived continuity can influence the build-up of stream segregation by manipulating the perception of continuity during an induction sequence and measuring streaming in a subsequent test sequence comprising three triplets of low and high frequency tones (LHL-…). For experiment 1, a 1.2-s standard induction sequence comprising six 100-ms L-tones strongly promoted segregation, whereas a single extended L-inducer (1.1 s plus 100-ms silence) did not. Segregation was similar to that following the single extended inducer when perceived continuity was evoked by inserting noise bursts between the individual tones. Reported segregation increased when the noise level was reduced such that perceived continuity no longer occurred. Experiment 2 presented a 1.3-s continuous inducer created by bridging the 100-ms silence between an extended L-inducer and the first test-sequence tone. This configuration strongly promoted segregation. Segregation was also increased by filling the silence after the extended inducer with noise, such that it was perceived like a bridging inducer. Like physical continuity, perceived continuity can promote or reduce test-sequence streaming, depending on stimulus context.