825 resultados para Strain-gage
Resumo:
The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularide A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing besides higher production levels faster growth and differences in pellet formation. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of this fungus and its mutant. For this purpose, an optimised protein extraction protocol was established. Here, we show the first proteome study of a marine fungus. In total, 4759 proteins were identified. The central metabolic pathway of LF580 could be mapped by using KEGG pathway analysis and GO annotation. Using iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to a limited nutrient availability in wild type strain due to a strong pellet formation. This information can be applied to optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum.
Resumo:
Experimental results related to the effects of ocean acidification on planktonic marine microbes are still rather inconsistent and occasionally contradictory. Moreover, laboratory or field experiments that address the effects of changes in CO2 concentrations on heterotrophic microbes are very scarce, despite the major role of these organisms in the marine carbon cycle. We tested the direct effect of an elevated CO2 concentration (1000 ppmv) on the biomass and metabolic rates (leucine incorporation, CO2 fixation and respiration) of 2 isolates belonging to 2 relevant marine bacterial families, Rhodobacteraceae (strain MED165) and Flavobacteriaceae (strain MED217). Our results demonstrate that, contrary to some expectations, high pCO2 did not negatively affect bacterial growth but increased growth efficiency in the case of MED217. The elevated partial pressure of CO2 (pCO2) caused, in both cases, higher rates of CO2 fixation in the dissolved fraction and, in the case of MED217, lower respiration rates. Both responses would tend to increase the pH of seawater acting as a negative feedback between elevated atmospheric CO2 concentrations and ocean acidification.
Resumo:
Coccolithophores are unicellular phytoplankton that produce calcium carbonate coccoliths as an exoskeleton. Emiliania huxleyi, the most abundant coccolithophore in the world's ocean, plays a major role in the global carbon cycle by regulating the exchange of CO2 across the ocean-atmosphere interface through photosynthesis and calcium carbonate precipitation. As CO2 concentration is rising in the atmosphere, the ocean is acidifying and ammonium (NH4) concentration of future ocean water is expected to rise. The latter is attributed to increasing anthropogenic nitrogen (N) deposition, increasing rates of cyanobacterial N2 fixation due to warmer and more stratified oceans, and decreased rates of nitrification due to ocean acidification. Thus future global climate change will cause oceanic phytoplankton to experience changes in multiple environmental parameters including CO2, pH, temperature and nitrogen source. This study reports on the combined effect of elevated pCO2 and increased NH4 to nitrate (NO3) ratio (NH4/NO3) on E. huxleyi, maintained in continuous cultures for more than 200 generations under two pCO2 levels and two different N sources. Here we show that NH4 assimilation under N-replete conditions depresses calcification at both low and high pCO2, alters coccolith morphology, and increases primary production. We observed that N source and pCO2 synergistically drive growth rates, cell size and the ratio of inorganic to organic carbon. These responses to N source suggest that, compared to increasing CO2 alone, a greater disruption of the organic carbon pump could be expected in response to the combined effect of increased NH4/NO3 ratio and CO2 level in the future acidified ocean. Additional experiments conducted under lower nutrient conditions are needed prior to extrapolating our findings to the global oceans. Nonetheless, our results emphasize the need to assess combined effects of multiple environmental parameters on phytoplankton biology in order to develop accurate predictions of phytoplankton responses to ocean acidification.
Resumo:
This study investigated the impact of photon flux and elevated CO2 concentrations on growth and photosynthetic electron transport on the marine diatom Chaetoceros muelleri and looked for evidence for the presence of a CO2-concentrating mechanism (CCM). pH drift experiments clearly showed that C. muelleri has the capacity to use bicarbonate to acquire inorganic carbon through one or multiple CCMs. The final pH achieved in unbuffered cultures was not changed by light intensity, even under very low photon flux, implying a low energy demand of bicarbonate use via a CCM. In short-term pH drift experiments, only treatment with the carbonic anhydrase inhibitor ethoxyzolamide (EZ) slowed down the rise in pH considerably. EZ was also the only inhibitor that altered the final pH attained, although marginally. In growth experiments, CO2 availability was manipulated by changing the pH in closed flasks at a fixed dissolved inorganic carbon (DIC) concentration. Low-light-treated samples showed lower growth rates in elevated CO2conditions. No CO2 effect was recorded under high light exposure. The maximal photosynthetic capacity, however, increased with CO2 concentration in saturating, but not in subsaturating, light intensities. Growth and photosynthetic capacity therefore responded in opposite ways to increasing CO2 availability. The capacity to photoacclimate to high and low photon flux appeared not to be affected by CO2treatments. However, photoacclimation was restricted to growth photon fluxes between 30 and 300 µmol photons m-2 s-1. The light saturation points for photosynthetic electron transport and for growth coincided at 100 µmol photons m-2 s-1. Below 100 µmol photons m-2 s-1 the light saturation point for photosynthesis was higher than the growth photon flux (i.e. photosynthesis was not light saturated under growth conditions), whereas at higher growth photon flux, photosynthesis was saturated below growth light levels.
Resumo:
Norcamphor (C7H10O) was subjected to plane strain simple shear in a see-through deformation rig at four different strain rate and temperature conditions. Two transient stages in the microfabric evolution to steady state are distinguished. The grain scale mechanisms associated with the microstructural and textural evolution vary with the applied temperature, strain rate and strain. In high-temperature-low-strain-rate experiments, computer integrated polarization microscopy reveals that the texture evolution is closely related to the crystallographic rotation paths and rotation rates of individual grains. High c-axis rotation rates at low to intermediate shear strains are related to the development of a symmetrical c-axis cross girdle by the end of the first transient stage (γ = 1.5 to 2). During the second transient stage (γ = 1.5 to 6), the cross girdle yields to an oblique c-axis single girdle as c-axis rotation rates decrease and the relative activity of grain boundary migration recrystallization increases. Steady state (γ > 8) is characterized by a stable end orientation of the sample texture and the cyclic growth, rotation and consumption of individual grains within the aggregate.