987 resultados para Steinschneider, Moritz
Resumo:
von Moritz Stern
Resumo:
von Moritz Stern
Resumo:
von Moritz Stern
Resumo:
von Moritz Stern
Resumo:
gesammelt u. mitgeteilt von Moritz Stern
Resumo:
Abstract The current treatment of painful hip dysplasia in the mature skeleton is based on acetabular reorientation. Reorientation procedures attempt to optimize the anatomic position of the hyaline cartilage of the femoral head and acetabulum in regard to mechanical loading. Because the Bernese periacetabular osteotomy is a versatile technique for acetabular reorientation, it is helpful to understand the approach and be familiar with the criteria for an optimal surgical correction. The femoral side bears stigmata of hip dysplasia that may require surgical correction. Improvement of the head-neck offset to avoid femoroacetabular impingement has become routine in many hips treated with periacetabular osteotomy. In addition, intertrochanteric osteotomies can help improve joint congruency and normalize the femoral neck orientation. Other new surgical techniques allow trimming or reducing a severely deformed head, performing a relative neck lengthening, and trimming or distalizing the greater trochanter. An increasing number of studies have reported good long-term results after acetabular reorientation procedures, with expected joint preservation rates ranging from 80% to 90% at the 10-year follow-up and 60% to 70% at the 20-year follow-up. An ideal candidate is younger than 30 years, with no preoperative signs of osteoarthritis. Predicted joint preservation in these patients is approximately 90% at the 20-year follow-up. Recent evidence indicates that additional correction of an aspheric head may further improve results.
Resumo:
Syphilis is an infectious, usually sexually transmitted, disease caused by Treponema pallidum, subspecies pallidum. Because of the increasing prevalence in Europe during the past few years, dentists could be confronted with patients with oral manifestations of syphilis. Because oral lesions are highly contagious, it is vital to make the correct diagnosis quickly to initiate the proper therapy and to interrupt the chain of infection. We present the cases of 5 patients with syphilis-related oral lesions. These cases are representative because of their clinical presentation, age, and gender distribution and the diagnostic approach. The aim of the present report is to emphasize the importance of the dentist knowing and identifying syphilis in different stages to diagnose the disease and institute treatment at an early stage.
Resumo:
von Moritz Ungar
Resumo:
von Moritz A. Loeb
Resumo:
Eukaryotic cells are compartmentalized into membrane-bound organelles in order to provide sheltered reaction rooms for various specific processes. Organelles are not randomly distributed in a cell or operate isolated from each other. At the contrary — some organelles are closely linked and their functions are tightly orchestrated. The most well-known example of two such organelles acting in concert are the ER and the mitochondrion that work together in order to coordinate cellular lipid biosynthesis, maintain Ca2+-homeostasis, regulate mitochondrial division and control mitochondrial/ER shape as well as to synchronize the movement of these organelles within a cell. To study the mitochondrion and its interface to the ER requires a simplified mitochondrial system. African trypanosomes represent such a system. The unicellular parasite that causes devastating diseases in humans and animals has only one large mitochondrion that does not undergo fission/fusion events except for the context of cell division. Moreover, mitochondrial functions and morphology are highly regulated throughout the life cycle of the protozoan. Central to the understanding of how mitochondria control their morphology, communicate with their surroundings and manage exchange of metabolites and transport of biopolymers (proteins, RNAs) is the mitochondrial outer membrane (MOM), as the MOM defines the boundary of the organelle. Recently, we have purified the MOM of T. brucei and characterized its proteome using label-free quantitative mass spectrometry for protein abundance profiling in combination with statistical analysis. Our results show that the trypanosomal MOM proteome consists of 82 proteins, two thirds of which have never been associated with mitochondria before. Among these, we identified novel factors required to regulate mitochondrial morphology and the long-elusive protein import machinery of T. brucei. A comparison with the MOM proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. One of these is the Miro-GTPase Gem1. In yeast, this Ca2+-EF-Hand containing polypeptide is thought to be involved in a protein complex that physically tethers the mitochondrion to the ER. Interestingly, a putative tethering complex in mammalian cells was linked to the mitochondrial fusion/fission machinery. Thus, the concept of a protein complex-mediated connection seems to be a general and conserved feature. We are currently investigating, if such a protein complex exists in T. brucei and if the trypanosomal Gem1 protein is involved. This ER-subdomain associated with mitochondria has been termed mitochondria-associated ER-membranes or MAM. The MAM has recently been implicated to play a key role in Alzheimer’s disease. It is therefore of broad and general interest to establish other eukaryotic model systems in order to investigate the MAM-MOM connection in more detail.
Resumo:
Central to the understanding of how mitochondria control their morphology, communicate with their surroundings and manage exchange of metabolites and transport of biopolymers (proteins, RNAs) is the mitochondrial outer membrane (MOM), as the MOM defines the boundary of the organelle. Recently, we have purified the MOM of the mitochondrial model organism T. brucei and characterized its proteome. Our results show that the trypanosomal MOM proteome consists of 82 proteins. Among these, we identified novel factors required to regulate mitochondrial morphology and the long-elusive protein import machinery of T. brucei. A comparison with the MOM proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. One of these is the Miro-GTPase Gem1. In yeast, this Ca2+-EF-Hand containing polypeptide is thought to be involved in a protein complex that physically tethers the mitochondrion to the ER. In mammalian cells, a putative tethering complex was linked to the mitochondrial fusion/fission machinery. Thus, the concept of a protein complex-mediated connection seems to be a general and conserved feature. We are currently investigating if such a protein complex exists in T. brucei and if the trypanosomal Gem1 protein is involved.
Resumo:
von Moritz Spanier