950 resultados para Stat1 Serine Phosphorylation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We established stable COS-7 cell lines overexpressing recombinant PTPMEG and an inactive mutant form in which the active site cysteine is mutated to serine (PTPMEGCS). We found that both endogenous and recombinant enzyme were primarily located in the membrane and cytoskeletal fractions of COS-7 cells. Endogenous PTPMEG accounts for only 1/3000th of the total tyrosine phosphatase activity in COS-7 cells and transfected cells expressed 2- to 7-fold higher levels of the enzyme. These levels of overexpression did not result in detectable changes in either total tyrosine phosphatase activity or the state of protein tyrosine phosphorylation as determined by immunoblotting of cell homogenates with anti-phosphotyrosine antibodies. Despite the low levels of activity for PTPMEG, we found that overexpressing cells grew slower and reached confluence at a lower density than vector transfected cells. Surprisingly, PTPMEGCS-transfected cells also reach confluence at a lower density than vector-transfected cells, although they grow to higher density than PTPMEG-transfected cells. Both constructs inhibited the ability of COS-7 cells to form colonies in soft agar, with the native PTPMEG having a greater effect (30-fold) than PTPMEGCS (10-fold). These results indicate that in COS-7 cells both PTPMEG and PTPMEGCS inhibit cell proliferation, reduce the saturation density, and block the ability of these cells to grow without adhering to a solid matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stabilization of p53 in response to DNA damage is caused by its dissociation from Mdm2, a protein that targets p53 for degradation in the proteasome. Dissociation of p53 from Mdm2 could be caused by DNA damage-induced p53 posttranslational modifications. The ATM and ATR kinases, whose activation in response to ionizing radiation (IR) and UV light, respectively, is required for p53 stabilization, directly phosphorylate p53 on Ser-15. However, phosphorylation of Ser-15 is critical for the apoptotic activity of p53 and not for p53 stabilization. Thus, whether any p53 modifications, and which, underlie disruption of the p53–Mdm2 complex after DNA damage remains to be determined. We analyzed the IR- and UV light-induced stabilization of p53 proteins with substitutions of Ser known to be posttranslationally modified after DNA damage. Substitution of Ser-20 was sufficient to abrogate p53 stabilization in response to both IR and UV light. Furthermore, both IR and UV light induced phosphorylation of p53 on Ser-20, which involved the majority of nuclear p53 protein and weakened the interaction of p53 with Mdm2 in vitro. ATM and ATR cannot phosphorylate p53 on Ser-20. We therefore propose that ATM and ATR activate an, as yet unidentified, kinase that stabilizes p53 by phosphorylating it on Ser-20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smad proteins are critical intracellular mediators of signaling by growth and differentiation factors of the transforming growth factor β superfamily. We have isolated a member of the Smad family, Smad8, from a rat brain cDNA library and biochemically and functionally characterized its ability to transduce signals from serine kinase receptors. In Xenopus embryo, Smad8 is able to transcriptionally activate a subset of mesoderm target genes similar to those induced by the receptor serine kinase, activin receptor-like kinase (ALK)-2. Smad8 can be specifically phosphorylated by a constitutively active ALK-2 but not the related receptor serine kinase, ALK-4. In response to signaling from ALK-2, Smad8 associates with a common regulatory molecule, Smad4, and this association leads to a synergistic effect on gene transcription. Furthermore, Smad8 is able to rescue the expression of mesoderm genes blocked by truncated ALK-2 in the embryo. These results indicate that Smad8 can function as a downstream signaling mediator of ALK-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell–cell recognition and patterning of cell contacts have a critical role in mediating reversible assembly of a variety of transcellular complexes in the nervous system. This study provides evidence for regulation of cell interactions through modulation of ankyrin binding to neurofascin, a member of the L1CAM family of nervous system cell adhesion molecules. The phosphorylation state of the conserved FIGQY tyrosine in the cytoplasmic domain of neurofascin regulates ankyrin binding and governs neurofascin-dependent cell aggregation as well as cell sorting when neurofascin is expressed in neuroblastoma cells. These findings suggest a general mechanism for the patterning of cell contact based on external signals that regulate tyrosine phosphorylation of L1CAM members and modulate their binding to ankyrin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B cell development and humoral immune responses are controlled by signaling thresholds established through the B lymphocyte antigen receptor (BCR) complex. BCR signaling thresholds are differentially regulated by the CD22 and CD19 cell surface receptors in vivo. B cells from CD22-deficient mice exhibit characteristics of chronic stimulation and are hyper-responsive to BCR crosslinking with augmented intracellular Ca2+ responses. By contrast, B cells from CD19-deficient mice are hypo-responsive to transmembrane signals. To identify signaling molecules involved in the positive and negative regulation of signaling thresholds, the signal transduction pathways activated after BCR crosslinking were examined in CD22- and CD19-deficient B cells. These comparisons revealed that tyrosine phosphorylation of Vav protein was uniquely augmented after BCR or CD19 crosslinking in CD22-deficient B cells, yet was modest and transient after BCR crosslinking in CD19-deficient B cells. Ligation of CD19 and CD22 in vivo is likely to positively and negatively regulate BCR signaling, respectively, because CD19 crosslinking was more efficient than BCR crosslinking at inducing Vav phosphorylation. However, simultaneous crosslinking of CD19 with the BCR resulted in a substantial decrease in Vav phosphorylation when CD22 was expressed. Thus, the differential regulation of Vav tyrosine phosphorylation by CD19 and CD22 may provide a molecular mechanism for adjusting BCR signaling thresholds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myotonic dystrophy (DM) is associated with expansion of CTG repeats in the 3′-untranslated region of the myotonin protein kinase (DMPK) gene. The molecular mechanism whereby expansion of the (CUG)n repeats in the 3′-untranslated region of DMPK gene induces DM is unknown. We previously isolated a protein with specific binding to CUG repeat sequences (CUG-BP/hNab50) that possibly plays a role in mRNA processing and/or transport. Here we present evidence that the phosphorylation status and intracellular distribution of the RNA CUG-binding protein, identical to hNab50 protein (CUG-BP/hNab50), are altered in homozygous DM patient and that CUG-BP/hNab50 is a substrate for DMPK both in vivo and in vitro. Data from two biological systems with reduced levels of DMPK, homozygous DM patient and DMPK knockout mice, show that DMPK regulates both phosphorylation and intracellular localization of the CUG-BP/hNab50 protein. Decreased levels of DMPK observed in DM patients and DMPK knockout mice led to the elevation of the hypophosphorylated form of CUG-BP/hNab50. Nuclear concentration of the hypophosphorylated CUG-BP/hNab50 isoform is increased in DMPK knockout mice and in homozygous DM patient. DMPK also interacts with and phosphorylates CUG-BP/hNab50 protein in vitro. DMPK-mediated phosphorylation of CUG-BP/hNab50 results in dramatic reduction of the CUG-BP2, hypophosphorylated isoform, accumulation of which was observed in the nuclei of DMPK knockout mice. These data suggest a feedback mechanism whereby decreased levels of DMPK could alter phosphorylation status of CUG-BP/hNab50, thus facilitating nuclear localization of CUG-BP/hNab50. Our results suggest that DM pathophysiology could be, in part, a result of sequestration of CUG-BP/hNab50 and, in part, of lowered DMPK levels, which, in turn, affect processing and transport of specific subclass of mRNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structures of Escherichia coli thymidylate kinase (TmpK) in complex with P1-(5′-adenosyl)-P5-(5′-thymidyl)pentaphosphate and P1-(5′-adenosyl)P5-[5′-(3′-azido-3′-deoxythymidine)] pentaphosphate have been solved to 2.0-Å and 2.2-Å resolution, respectively. The overall structure of the bacterial TmpK is very similar to that of yeast TmpK. In contrast to the human and yeast TmpKs, which phosphorylate 3′-azido-3′-deoxythymidine 5′-monophosphate (AZT-MP) at a 200-fold reduced turnover number (kcat) in comparison to the physiological substrate dTMP, reduction of kcat is only 2-fold for the bacterial enzyme. The different kinetic properties toward AZT-MP between the eukaryotic TmpKs and E. coli TmpK can be rationalized by the different ways in which these enzymes stabilize the presumed transition state and the different manner in which a carboxylic acid side chain in the P loop interacts with the deoxyribose of the monophosphate. Yeast TmpK interacts with the 3′-hydroxyl of dTMP through Asp-14 of the P loop in a bidentate manner: binding of AZT-MP results in a shift of the P loop to accommodate the larger substituent. In E. coli TmpK, the corresponding residue is Glu-12, and it interacts in a side-on fashion with the 3′-hydroxyl of dTMP. This different mode of interaction between the P loop carboxylic acid with the 3′ substituent of the monophosphate deoxyribose allows the accommodation of an azido group in the case of the E. coli enzyme without significant P loop movement. In addition, although the yeast enzyme uses Arg-15 (a glycine in E. coli) to stabilize the transition state, E. coli seems to use Arg-153 from a region termed Lid instead. Thus, the binding of AZT-MP to the yeast TmpK results in the shift of a catalytic residue, which is not the case for the bacterial kinase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorylation of the regulatory light chain (RLC) activates the actin-dependent ATPase activity of Dictyostelium myosin II. To elucidate this regulatory mechanism, we characterized two mutant myosins, MyΔC1225 and MyΔC1528, which are truncated at Ala-1224 and Ser-1527, respectively. These mutant myosins do not contain the C-terminal assembly domain and thus are unable to form filaments. Their activities were only weakly regulated by RLC phosphorylation, suggesting that, unlike smooth muscle myosin, efficient regulation of Dictyostelium myosin II requires filament assembly. Consistent with this hypothesis, wild-type myosin progressively lost the regulation as its concentration in the assay mixture was decreased. Dephosphorylated RLC did not inhibit the activity when the concentration of myosin in the reaction mixture was very low. Furthermore, 3xAsp myosin, which does not assemble efficiently due to point mutations in the tail, also was less well regulated than the wild-type. We conclude that the activity in the monomer state is exempt from inhibition by the dephosphorylated RLC and that the complete regulatory switch is formed only in the filament structure. Interestingly, a chimeric myosin composed of Dictyostelium heavy meromyosin fused to chicken skeletal light meromyosin was not well regulated by RLC phosphorylation. This suggests that, in addition to filament assembly, some specific feature of the filament structure is required for efficient regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft. The proteins belong to a large family of secondary transporters, which includes bacterial glutamate transporters. The C-terminal half of the glutamate transporters is well conserved and thought to contain the translocation path and the binding sites for substrate and coupling ions. A serine-rich sequence motif in this part of the proteins is located in a putative intracellular loop. Cysteine-scanning mutagenesis was applied to this loop in the glutamate transporter GltT of Bacillus stearothermophilus. The loop was found to be largely intracellular, but three consecutive positions in the conserved serine-rich motif (S269, S270, and E271) are accessible from both sides of the membrane. Single-cysteine mutants in the serine-rich motif were still capable of glutamate transport, but modification with N-ethylmaleimide blocked the transport activity in six mutants (T267C, A268C, S269C, S270C, E271C, and T272C). Two milimolars l-glutamate effectively protected against the modification of the cysteines at position 269–271 from the periplasmic side of the membrane but was unable to protect cysteine modification from the cytoplasmic side of the membrane. The results indicate that the conserved serine-rich motif in the glutamate transporter forms a reentrant loop, a structure that is found in several ion channels but is unusual for transporter proteins. The reentrant loop is of crucial importance for the function of the glutamate transporter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although odorants are known to activate olfactory receptor neurons through cAMP, the long-term effects of odorant detection are not known. Our recent findings indicate that there is also a delayed and sustained cAMP response, with kinetics sufficient to mediate long-term cellular responses. This cAMP response is mediated by cGMP through activation of adenylyl cyclase by protein kinase G (PKG). Therefore, we investigated the ability of odorants to regulate gene expression in rat olfactory epithelium. The cAMP-responsive binding protein (CREB) is a well-characterized transcription factor regulated by cAMP. We examined CREB activity in rat olfactory epithelium and olfactory receptor neurons (ORNs) after stimulation with odorants. Odorants increased levels of phosphorylated CREB in olfactory epithelium in vivo, and this increase was localized to ORNs in vitro. Incubation with 8-bromo-cGMP or sodium nitroprusside, a guanylyl cyclase activator, also increased phosphorylated CREB. In vitro, cAMP-dependent protein kinase phosphorylated CREB. In contrast, PKG failed to phosphorylate CREB directly in vitro. Our results demonstrate that the delayed odorant-induced cAMP signal activates CREB, which in turn may modulate gene expression in ORNs. In addition, cGMP indirectly affects CREB activation. This effect of cGMP on CREB activity through cAMP provides another mechanism for the modulation of CREB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein phosphatase 2A (PP2A) is an abundant, multifunctional serine/threonine-specific phosphatase that stimulates simian virus 40 DNA replication. The question as to whether chromosomal DNA replication also depends on PP2A was addressed by using a cell-free replication system derived from Xenopus laevis eggs. Immunodepletion of PP2A from Xenopus egg extract resulted in strong inhibition of DNA replication. PP2A was required for the initiation of replication but not for the elongation of previously engaged replication forks. Therefore, the initiation of chromosomal DNA replication depends not only on phosphorylation by protein kinases but also on dephosphorylation by PP2A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light triggers the phototransduction cascade by activating the visual pigment rhodopsin (Rho → Rho*). Phosphorylation of Rho* by rhodopsin kinase (RK) is necessary for the fast recovery of sensitivity after intense illumination. Ca2+ ions, acting through Ca2+-binding proteins, have been implicated in the desensitization of phototransduction. One such protein, recoverin, has been proposed to regulate RK activity contributing to adaptation to background illumination in retinal photoreceptor cells. In this report, we describe an in vitro assay system using isolated retinas that is well suited for a variety of biochemical assays, including assessing Ca2+ effects on Rho* phosphorylation. Pieces of bovine retina with intact rod outer segments were treated with pore-forming staphylococcal α-toxin, including an α-toxin mutant that forms pores whose permeability is modulated by Zn2+. The pores formed through the plasma membranes of rod cells permit the diffusion of small molecules <2 kDa but prevent the loss of proteins, including recoverin (25 kDa). The selective permeability of these pores was confirmed by using the small intracellular tracer N-(2-aminoethyl) biotinamide hydrochloride. Application of [γ-32P]ATP to α-toxin-treated, isolated retina allowed us to monitor and quantify phosphorylation of Rho*. Under various experimental conditions, including low and high [Ca2+]free, the same level of Rho* phosphorylation was measured. No differences were observed between low and high [Ca2+]free conditions, even when rods were loaded with ATP and the pores were closed by Zn2+. These results suggest that under physiological conditions, Rho* phosphorylation is insensitive to regulation by Ca2+ and Ca2+-binding proteins, including recoverin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of familial Alzheimer disease mutations are linked to the recently cloned presenilin (PS) genes, which encode two highly homologous proteins (PS-1 and PS-2). It was shown that the full-length PS-2 protein is phosphorylated constitutively within its N-terminal domain by casein kinases, whereas the PS-1 protein is not. Full-length PS proteins undergo endoproteolytic cleavage within their hydrophilic loop domain resulting in the formation of ≈20-kDa C-terminal fragments (CTF) and ≈30-kDa N-terminal fragments [Thinakaran, G., et al. (1996) Neuron 17, 181–190]. Here we describe the surprising finding that the CTF of PS-1 is phosphorylated by protein kinase C (PKC). Stimulation of PKC causes a 4- to 5-fold increase of the phosphorylation of the ≈20-kDa CTF of PS-1 resulting in reduced mobility in SDS gels. PKC-stimulated phosphorylation occurs predominantly on serine residues and can be induced either by direct stimulation of PKC with phorbol-12,13-dibutyrate or by activation of the m1 acetylcholine receptor-signaling pathway with the muscarinic agonist carbachol. However, phosphorylation of full-length PS-1 and PS-2 is not altered upon PKC stimulation. In addition, a mutant form of PS-1 lacking exon 10, which does not undergo endoproteolytic cleavage [Thinakaran, G., et al. (1996) Neuron 17, 181–190] is not phosphorylated by PKC, although it still contains all PKC phosphorylation sites conserved between different species. These results show that PKC phosphorylates the PS-1 CTF. Therefore, endoproteolytic cleavage of full-length PS-1 results in the generation of an in vivo substrate for PKC. The selective phosphorylation of the PS-1 CTF indicates that the physiological and/or pathological properties of the CTF are regulated by PKC activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the postgenome era rapidly approaching, new strategies for the functional analysis of proteins are needed. To date, proteomics efforts have primarily been confined to recording variations in protein level rather than activity. The ability to profile classes of proteins on the basis of changes in their activity would greatly accelerate both the assignment of protein function and the identification of potential pharmaceutical targets. Here, we describe the chemical synthesis and utility of an active-site directed probe for visualizing dynamics in the expression and function of an entire enzyme family, the serine hydrolases. By reacting this probe, a biotinylated fluorophosphonate referred to as FP-biotin, with crude tissue extracts, we quickly and with high sensitivity detect numerous serine hydrolases, many of which display tissue-restricted patterns of expression. Additionally, we show that FP-biotin labels these proteins in an activity-dependent manner that can be followed kinetically, offering a powerful means to monitor dynamics simultaneously in both protein function and expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-component systems, sensor kinase-response regulator pairs, dominate bacterial signal transduction. Regulation is exerted by phosphorylation of an Asp in receiver domains of response regulators. Lability of the acyl phosphate linkage has limited structure determination for the active, phosphorylated forms of receiver domains. As assessed by both functional and structural criteria, beryllofluoride yields an excellent analogue of aspartyl phosphate in response regulator NtrC, a bacterial enhancer-binding protein. Beryllofluoride also appears to activate the chemotaxis, sporulation, osmosensing, and nitrate/nitrite response regulators CheY, Spo0F, OmpR, and NarL, respectively. NMR spectroscopic studies indicate that beryllofluoride will facilitate both biochemical and structural characterization of the active forms of receiver domains.