897 resultados para Spatio-temporal variation
Resumo:
An analytical and numerical investigation is presented of the behavior of a linearly polarized electromagnetic pulse as it propagates through a plasma. Considering a weakly relativistic regime, the system of one-dimensional fluid-Maxwell equations is reduced to a generalized nonlinear Schrodinger type equation, which is solved numerically using a split step Fourier method. The spatio-temporal evolution of an electromagnetic pulse is investigated. The evolution of the envelope amplitude of density harmonics is also studied. An electromagnetic pulse propagating through the plasma tends to broaden due to dispersion, while the nonlinear frequency shift is observed to slow down the pulse at a speed lower than the group velocity. Such nonlinear effects are more important for higher density plasmas. The pulse broadening factor is calculated numerically, and is shown to be related to the background plasma density. In particular, the broadening effect appears to be stronger for dense plasmas. The relation to existing results on electromagnetic pulses in laser plasmas is discussed. (c) 2008 American Institute of Physics.
Resumo:
It is often suggested that the relative importance of biotic processes, such as recruitment, competition and predation of marine benthic species, varies predictably along a gradient of exposure to wave action. Several established models of community dynamics on rocky shores predict that top-down processes are more important for structuring communities on sheltered than on exposed shores. To test the relative dominance of top-down processes, we first measured the establishment of key benthic species (mussels, barnacles and algae) on 3 sheltered and 3 exposed rocky shores in southwest Ireland over two 6 mo periods. We then manipulated the presence of consumers (e.g. grazing gastropods, crabs, whelks), using caged exclosures, on 2 sheltered and 2 exposed shores to test for an interaction between effects of consumers and shore exposure on the establishment of benthic species. In contrast to predictions, we found that consumers strongly affected establishment of all species regardless of shore exposure. We also found that shore exposure was not a reliable predictor for spatial and temporal variation in rates of establishment of sessile benthic species. Our findings provide experimental evidence which demonstrates the importance of consumers in early post-settlement stages of benthic species-essential for the development of benthic-pelagic models. © 2011 Inter-Research.
--------------------------------------------------------------------------------
Reaxys Database Information|
Resumo:
Interferometry has been used to investigate the spatio-temporal evolution of the electron number density in the initial stages of expansion following 248 nm ablation of a titanium target. Three-dimensional electron number densities are obtained from an interferogram of the plasma plume using the Abel inversion technique.
Resumo:
The Rapid Oscillations in the Solar Atmosphere instrument reveals solar atmospheric fluctuations at high frequencies. Spectra of variations of the G-band intensity (IG ) and Ca II K-line intensity (IK ) show correlated fluctuations above white noise to frequencies beyond 300 mHz and 50 mHz, respectively. The noise-corrected G-band spectrum for f = 28-326 mHz shows a power law with exponent -1.21 ± 0.02, consistent with the presence of turbulent motions. G-band spectral power in the 25-100 mHz ("UHF") range is concentrated at the locations of magnetic bright points in the intergranular lanes and is highly intermittent in time. The intermittence of the UHF G-band fluctuations, shown by a positive kurtosis ?, also suggests turbulence. Combining values of IG , IK , UHF power, and ? reveals two distinct states of the solar atmosphere. State 1, including almost all the data, is characterized by low IG , IK , and UHF power and ? ˜ 6. State 2, including only a very small fraction of the data, is characterized by high IG , IK , and UHF power and ? ˜ 3. Superposed epoch analysis shows that the UHF power peaks simultaneously with spatio-temporal IG maxima in either state. For State 1, IK shows 3.5 minute chromospheric oscillations with maxima occurring 21 s after IG maxima implying a 150-210 km effective height difference. However, for State 2 the IK and IG maxima are simultaneous; in this highly magnetized environment sites of G-band and K-line emission may be spatially close together.
Resumo:
A comparison is presented of the temporally resolved resonance-line emission from the Ne-like Ge XUV laser (pumped with nanosecond pulses) with the predictions for the same emission from the hydro-atomic code EHYBRID. The specific lines chosen were the two 3s-2p Ne-like lines at 10.01 and 9.762 Angstrom, and the 3s-2p F-like group of lines in the 9.4-9.6 Angstrom region. Modification of the code to include 112 excited levels of the F-like ion facilitated a direct comparison between experiment and model of (i) the temporal variation of the emissions and (ii) the variation of the peak intensity ratios of the F-like to Ne-like emissions with irradiance on target.
Resumo:
The fourteen essays of this volume engage in distinct ways with the matter of motion in early modern Spanish poetics, without limiting the dialectic of stasis and movement to any single sphere or manifestation. Interrogation of the interdependence of tradition and innovation, poetry, power and politics, shifting signifiers, the intersection of topography and deviant temporalities, the movement between the secular and the sacred, tensions between centres and peripheries, issues of manuscript circulation and reception, poetic calls and echoes across continents and centuries, and between creative writing and reading subjects, all demonstrate that Helgerson's central notion of conspicuous movement is relevant beyond early sixteenth-century secular poetics, By opening it up we approximate a better understanding of poetry's flexible spatio-temporal co-ordinates in a period of extraordinary historical circumstances and conterminous radical cultural transformation
Resumo:
The focus of this study was to disentangle the effects of multiple stressors on biodiversity, ecosystem functioning and stability. This project examined the effects of anthropogenic increased nutrient loads on the diversity of coastal ecosystems and the effects of loss of species on ecosystem functioning. Specifically, the direct effect of sewage outfalls on benthic communities was assessed using a fully replicated survey that incorporated spatial and temporal variation. In addition, two field experiments examined the effects of loss of species at multiple trophic levels, and tested for potential interactive effects with enhanced nutrient concentration conditions on benthic assemblage structure and ecosystem functioning. This research addressed priority issues outlined in the Biodiversity Knowledge Programme for Ireland (2006) and also aimed to deliver information relevant to European Union (EU) directives (the Water Framework Directive [WFD], the Habitats Directive and the Marine Strategy Framework Directive).
Resumo:
Coastal systems, such as rocky shores, are among the most heavily anthropogenically-impacted marine ecosystems and are also among the most productive in terms of ecosystem functioning. One of the greatest impacts on coastal ecosystems is nutrient enrichment from human activities such as agricultural run-off and discharge of sewage. The aim of this study was to identify and characterise potential effects of sewage discharges on the biotic diversity of rocky shores and to test current tools for assessing the ecological status of rocky shores in line with the EU Water Framework Directive (WFD). A sampling strategy was designed to test for effects of sewage outfalls on rocky shore assemblages on the east coast of Ireland and to identify the scale of the putative impact. In addition, a separate sampling programme based on the Reduced algal Species List (RSL), the current WFD monitoring tool for rocky shores in Ireland and the UK, was also completed by identifying algae and measuring percent cover in replicate samples on rocky shores during Summer. There was no detectable effect of sewage outfalls on benthic taxon diversity or assemblage structure. However, spatial variability of assemblages was greater at sites proximal or adjacent to sewage outfalls compared to shores without sewage outfalls present. Results based on the RSL, show that algal assemblages were not affected by the presence of sewage outfalls, except when classed into functional groups when variability was greater at the sites with sewage outfalls. A key finding of both surveys, was the prevalence of spatial and temporal variation of assemblages. It is recommended that future metrics of ecological status are based on quantified sampling designs, incorporate changes in variability of assemblages (indicative of community stability), consider shifts in assemblage structure and include both benthic fauna and flora to assess the status of rocky shores.
Resumo:
Respiratory motion introduces complex spatio-temporal variations in the dosimetry of radiotherapy. There is a paucity of literature investigating the radiobiological consequences of intrafraction motion and concerns regarding the impact of movement when applied to cancer cell lines in vitro exist. We have addressed this by developing a novel model which accurately replicates respiratory motion under experimental conditions to allow clinically relevant irradiation of cell lines. A bespoke phantom and motor driven moving platform was adapted to accommodate flasks containing medium and cells in order to replicate respiratory motion using varying frequencies and amplitude settings. To study this effect on cell survival in vitro, dose response curves were determined for human lung cancer cell lines H1299 and H460 exposed to a uniform 6 MV radiation field under moving or stationary conditions. Cell survival curves showed no significant difference between irradiation at different dose points for these cell lines in the presence or absence of motion. These data indicate that motion of unshielded cells in vitro does not affect cell survival in the presence of uniform irradiation. This model provides a novel research platform to investigate the radiobiological consequences of respiratory motion in radiotherapy.
Resumo:
Anthropogenically deposited lead (Pb) binds efficiently to soil organic matter, which can be mobilized through hydrologically mediated mechanisms, with implications for ecological and potable quality of receiving waters. Lead isotopic ((206)Pb/(207)Pb) ratios change down peat profiles as a consequence of long-term temporal variation in depositional sources, each with distinctive isotopic signatures. This study characterizes differential Pb transport mechanisms from deposition to streams at two small catchments with contrasting soil types in upland Wales, U.K., by determining Pb concentrations and (206)Pb/(207)Pb ratios from soil core profiles, interstitial pore waters, and stream water. Hydrological characteristics of soils are instrumental in determining the location in soil profiles of exported Pb and hence concentration and (206)Pb/(207)Pb ratios in surface waters. The highest Pb concentrations from near-surface soils are mobilized, concomitant with high dissolved organic carbon (DOC) exports, from hydrologically responsive peat soils with preferential shallow subsurface flows, leading to increased Pb concentrations in stream water and isotopic signatures more closely resembling recently deposited Pb. In more minerogenic soils, percolation of water allows Pb, bound to DOC, to be retained in mineral horizons and combined with other groundwater sources, resulting in Pb being transported from throughout the profile with a more geogenic isotopic signature. This study shows that (206)Pb/(207)Pb ratios can enhance our understanding of the provenances and transport mechanisms of Pb and potentially organic matter within upland soils.
Resumo:
We compared the ability of five strains of the ericoid mycorrhizal fungus Hymenoscyphus ericae to utilise glutamine, ammonium or nitrate at high or low carbon (C) availability. The pattern of intraspecific variation in growth was affected by C availability. When C supply was high, growth differences between strains were explained by the total amount of nitrogen (N) taken up, suggesting variation in uptake kinetics. Under C-limiting conditions, strain differences were linked with their nitrogen use efficiency, implying intraspecific differences in N metabolism. The relationship between growth on glutamine and pH shifts in the media indicated that there was intraspecific variation in glutamine transporters. In addition, the correlation between pH changes and the amount of glutamine-N recovered as ammonium in the media indicated that there were intraspecific variations within the enzymatic pathways involved in glutamine metabolism. Our findings, compared with those of a previous study involving the same ericoid strains, draw attention to the temporal variation in nitrogen source utilisation by ericoid mycorrhizal fungi when maintained in axenic culture.
Resumo:
Managing gait disturbances in people with Parkinson’s disease is a pressing challenge, as symptoms can contribute to injury and morbidity through an increased risk of falls. While drug-based interventions have limited efficacy in alleviating gait impairments, certain non-pharmacological methods, such as cueing, can also induce transient improvements to gait. The approach adopted here is to use computationally-generated sounds to help guide and improve walking actions. The first method described uses recordings of force data taken from the steps of a healthy adult which in turn were used to synthesize realistic gravel-footstep sounds that represented different spatio-temporal parameters of gait, such as step duration and step length. The second method described involves a novel method of sonifying, in real time, the swing phase of gait using real-time motion-capture data to control a sound synthesis engine. Both approaches explore how simple but rich auditory representations of action based events can be used by people with Parkinson’s to guide and improve the quality of their walking, reducing the risk of falls and injury. Studies with Parkinson’s disease patients are reported which show positive results for both techniques in reducing step length variability. Potential future directions for how these sound approaches can be used to manage gait disturbances in Parkinson’s are also discussed.
Resumo:
Respiratory motion introduces complex spatio-temporal variations in the dosimetry of radiotherapy and may contribute towards uncertainties in radiotherapy planning. This study investigates the potential radiobiological implications occurring due to tumour motion in areas of geometric miss in lung cancer radiotherapy. A bespoke phantom and motor-driven platform to replicate respiratory motion and study the consequences on tumour cell survival in vitro was constructed. Human non-small-cell lung cancer cell lines H460 and H1299 were irradiated in modulated radiotherapy configurations in the presence and absence of respiratory motion. Clonogenic survival was calculated for irradiated and shielded regions. Direction of motion, replication of dosimetry by multi-leaf collimator (MLC) manipulation and oscillating lead shielding were investigated to confirm differences in cell survival. Respiratory motion was shown to significantly increase survival for out-of-field regions for H460/H1299 cell lines when compared with static irradiation (p <0.001). Significantly higher survival was found in the in-field region for the H460 cell line (p <0.030). Oscillating lead shielding also produced these significant differences. Respiratory motion and oscillatory delivery of radiation dose to human tumour cells has a significant impact on in- and out-of-field survival in the presence of non-uniform irradiation in this in vitro set-up. This may have important radiobiological consequences for modulated radiotherapy in lung cancer.
Resumo:
We have performed an experiment aimed at measuring self-generated magnetic fields produced in solids by high electron currents following high-intensity and high contrast short-pulse laser irradiation. This was done using longitudinal high resolution proton deflectometry. The experiment was performed at the Titan-JLF laser facility with a high-power short-pulse beam (700 fs, ~ 110 J) split into two beams irradiating two solid targets. One beam is used for the generation of protons and the other beam for the generation of the ultra-high currents of electrons and of the associated magnetic fields. This capability allows us to study the spatio-temporal evolution of the magnetic fields and its dependence on the laser intensity and target material. © Owned by the authors, published by EDP Sciences, 2013.
Resumo:
Late Pleistocene to Holocene margin sedimentation on the Great Barrier Reef, a mixed carbonatesiliciclastic margin, has been explained by a transgressive shedding model. This model has challenged widely accepted sequence stratigraphic models in terms of the timing and type of sediment (i.e. carbonate vs. siliciclastic) deposited during sea-level oscillations. However, this model documents only hemipelagic sedimentation and the contribution of coarse-grained turbidite deposition, and the role of submarine canyons in this process, remain elusive on this archetypal margin. Here we present a new model of turbidite deposition for the last 60 ky in the north-eastern Australia margin. Using highresolution bathymetry, 58 new and existing radiometric ages, and the composition of 81 turbidites from 15 piston cores, we found that the spatial and temporal variation of turbidites is controlled by the relationship between sea-level change and the variable physiography along the margin. Siliciclastic and mixed carbonate-siliciclastic turbidites were linked to canyons indenting the shelf-break and the welldeveloped shelf-edge reef barriers that stored sediment behind them. Turbidite deposition was sustained while the sea-level position allowed the connection and sediment bypassing through the interreef passages and canyons. Carbonate turbidites dominated in regions with more open conditions at the outer-shelf and where slope-confined canyons dominated or where canyons are generally less abundant. The turn-on and maintenance of carbonate production during sea-level fluctuations also influenced the timing of carbonate turbidite deposition. We show that a fundamental understanding of the variable physiography inherent to mixed carbonate-siliciclastic margins is essential to accurately interpret deep-water, coarse-grained deposition within a sequence stratigraphic context.