995 resultados para Spatial constraints
Resumo:
Silver has been demonstrated to be a powerful cationization agent in mass spectrometry (MS) for various olefinic species such as cholesterol and fatty acids. This work explores the utility of metallic silver sputtering on tissue sections for high resolution imaging mass spectrometry (IMS) of olefins by laser desorption ionization (LDI). For this purpose, sputtered silver coating thickness was optimized on an assorted selection of mouse and rat tissues including brain, kidney, liver, and testis. For mouse brain tissue section, the thickness was adjusted to 23 ± 2 nm of silver to prevent ion suppression effects associated with a higher cholesterol and lipid content. On all other tissues, a thickness of at 16 ± 2 nm provided the best desorption/ionization efficiency. Characterization of the species by MS/MS showed a wide variety of olefinic compounds allowing the IMS of different lipid classes including cholesterol, arachidonic acid, docosahexaenoic acid, and triacylglyceride 52:3. A range of spatial resolutions for IMS were investigated from 150 μm down to the high resolution cellular range at 5 μm. The applicability of direct on-tissue silver sputtering to LDI-IMS of cholesterol and other olefinic compounds presents a novel approach to improve the amount of information that can be obtained from tissue sections. This IMS strategy is thus of interest for providing new biological insights on the role of cholesterol and other olefins in physiological pathways or disease.
Learning-induced plasticity in auditory spatial representations revealed by electrical neuroimaging.
Resumo:
Auditory spatial representations are likely encoded at a population level within human auditory cortices. We investigated learning-induced plasticity of spatial discrimination in healthy subjects using auditory-evoked potentials (AEPs) and electrical neuroimaging analyses. Stimuli were 100 ms white-noise bursts lateralized with varying interaural time differences. In three experiments, plasticity was induced with 40 min of discrimination training. During training, accuracy significantly improved from near-chance levels to approximately 75%. Before and after training, AEPs were recorded to stimuli presented passively with a more medial sound lateralization outnumbering a more lateral one (7:1). In experiment 1, the same lateralizations were used for training and AEP sessions. Significant AEP modulations to the different lateralizations were evident only after training, indicative of a learning-induced mismatch negativity (MMN). More precisely, this MMN at 195-250 ms after stimulus onset followed from differences in the AEP topography to each stimulus position, indicative of changes in the underlying brain network. In experiment 2, mirror-symmetric locations were used for training and AEP sessions; no training-related AEP modulations or MMN were observed. In experiment 3, the discrimination of trained plus equidistant untrained separations was tested psychophysically before and 0, 6, 24, and 48 h after training. Learning-induced plasticity lasted <6 h, did not generalize to untrained lateralizations, and was not the simple result of strengthening the representation of the trained lateralizations. Thus, learning-induced plasticity of auditory spatial discrimination relies on spatial comparisons, rather than a spatial anchor or a general comparator. Furthermore, cortical auditory representations of space are dynamic and subject to rapid reorganization.
Resumo:
Recent theoretical models of economic growth have emphasised the role of external effects on the accumulation of factors of production. Although most of the literature has considered the externalities across firms within a region, in this paper we go a step further and consider the possibility that these externalities cross the barriers of regional economies. We assess the role of these external effects in explaining growth and economic convergence. We present a simple growth model, which includes externalities across economies, developing a methodology for testing their existence and estimating their strength. In our view, spatial econometrics is naturally suited to an empirical consideration of these externalities. We obtain evidence on the presence of significant externalities both across Spanish and European regions.
Resumo:
Urgonian-type carbonates are a characteristic feature of many late Early Cretaceous shallow-marine, tropical and subtropical environments. The presence of typical photozoan carbonate-producing communities including corals and rudists indicates the prevalence of warm, transparent and presumably oligotrophic conditions in a period otherwise characterized by the high density of globally occurring anoxic episodes. Of particular interest, therefore, is the exploration of relationships between Urgonian platform growth and palaeoceanographic change. In the French and Swiss Jura Mountains, the onset and evolution of the Urgonian platform have been controversially dated, and a correlation with other, better dated, successions is correspondingly difficult. It is for this reason that the stratigraphy and sedimentology of a series of recently exposed sections (Eclepens, Vaumarcus and Neuchatel) and, in addition, the section of the Gorges de l'Areuse were analysed. Calcareous nannofossil biostratigraphy, the evolution of phosphorus contents of bulk rock, a sequence-stratigraphic interpretation and a correlation of drowning unconformities with better dated sections in the Helvetic Alps were used to constrain the age of the Urgonian platform. The sum of the data and field observations suggests the following evolution: during the Hauterivian, important outward and upward growth of a bioclastic and oolitic carbonate platform is documented in two sequences, separated by a phase of platform drowning during the late Early Hauterivian. Following these two phases of platform growth, a second drowning phase occurred during the latest Hauterivian and Early Barremian, which was accompanied by significant platform erosion and sediment reworking. The Late Barremian witnessed the renewed installation of a carbonate platform, which initiated with a phase of oolite production, and which progressively evolved into a typical Urgonian carbonate platform colonized by corals and rudists. This phase terminated at the latest in the middle Early Aptian, due to a further drowning event. The evolution of this particular platform segment is compatible with that of more distal and well-dated segments of the same northern Tethyan platform preserved in the Helvetic zone of the Alps and in the northern subalpine chains (Chartreuse and Vercors).
Resumo:
One of the limitations of cross-country health expenditure analysis refers to the fact that the financing, the internal organization and political restraints of health care decision-making are country-specific and heterogeneous. Yet, a potential solution is to examine the influence of such effects in those countries that have undertaken decentralization processes. In such a setting, it is possible to examine potential expenditure spillovers across the geography of a country as well as the influence of the political ideology of regional incumbents on public health expenditure. This paper examines the determinants of public health expenditure within Spanish region-states (Autonomous Communities, ACs), most of them subject to similar financing structures although exhibiting significant heterogeneity as a result of the increasing decentralization, region-specific political factors along with different use of health care inputs, economic dimension and spatial interactions
Resumo:
The New Economic Geography literature allows detailed analysis of the factors that determine the location decisions of firms in integrated markets. However, the competitive process is modelled in a rather rudimentary way, and the empirical evidence has usually been obtained from reduced-form econometric specifications. This study describes a structural model that takes into account strategic interactions between firms. We investigate the relationship between the degree of perceived competition ¿ not only from local firms but from firms in other regions ¿ and geographic concentration. The preliminary results indicate that, in aggregate terms, local firms present stronger competition than firms in other regions. Moreover, it is confirmed that greater geographical concentration of production reduces market power, due to the intensification of local competition; however, its impact on production costs is unclear.
Resumo:
The spatial variability of soils under a same management system is differentiated, as expressed in the properties. The spatial variability of aggregate stability of a eutrophic Red Latosol (ERL) and a dystrophic Red Latosol (DRL) under sugarcane was characterized. Samples were collected in a regular 10 m grid, in the layers 0.0-0.2 and 0.2-0.4 m, with 100 points per area, and the following properties were determined: geometric mean diameter (GMD) of aggregates, mean weight diameter (MWD) of aggregates, percent of aggregates in the > 2.0 mm class and organic matter (OM) content. The eutrophic Red Latosol (ERL) had a higher aggregate stability thn the dystrophic Red Latosol (DRL), which may be attributed to the higher clay and OM content and the gibbsitic mineralogy of this soil class. The differentiated evolution of the studied Oxisols explains the wider range and lower variation coefficient and variability, for all properties studied in the eutrophic Red Latosol.
Resumo:
A new approach to the local measurement of residual stress in microstructures is described in this paper. The presented technique takes advantage of the combined milling-imaging features of a focused ion beam (FIB) equipment to scale down the widely known hole drilling method. This method consists of drilling a small hole in a solid with inherent residual stresses and measuring the strains/displacements caused by the local stress release, that takes place around the hole. In the presented case, the displacements caused by the milling are determined by applying digital image correlation (DIC) techniques to high resolution micrographs taken before and after the milling process. The residual stress value is then obtained by fitting the measured displacements to the analytical solution of the displacement fields. The feasibility of this approach has been demonstrated on a micromachined silicon nitride membrane showing that this method has high potential for applications in the field of mechanical characterization of micro/nanoelectromechanical systems.
Resumo:
In the areas where irrigated rice is grown in the south of Brazil, few studies have been carried out to investigate the spatial variability structure of soil properties and to establish new forms of soil management as well as determine soil corrective and fertilizer applications. In this sense, this study had the objective of evaluating the spatial variability of chemical, physical and biological soil properties in a lowland area under irrigated rice cultivation in the conventional till system. For this purpose, a 10 x 10 m grid of 100 points was established, in an experimental field of the Embrapa Clima Temperado, in the County of Capão do Leão, State of Rio Grande do Sul. The spatial variability structure was evaluated by geostatistical tools and the number of subsamples required to represent each soil property in future studies was calculated using classical statistics. Results showed that the spatial variability structure of sand, silt, SMP index, cation exchange capacity (pH 7.0), Al3+ and total N properties could be detected by geostatistical analysis. A pure nugget effect was observed for the nutrients K, S and B, as well as macroporosity, mean weighted diameter of aggregates, and soil water storage. The cross validation procedure, based on linear regression and the determination coefficient, was more efficient to evaluate the quality of the adjusted mathematical model than the degree of spatial dependence. It was also concluded that the combination of classical with geostatistics can in many cases simplify the soil sampling process without losing information quality.
Resumo:
Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images.
Resumo:
This paper presents the first quantitative study of the Early Jurassic recovery of ammonoids after the end-Triassic mass extinction based on detailed U-Pb ID-TIMS (isotope dilution thermal ionization mass spectrometry) geochronology from ash bed zircons placed within a clear phylogenetical and biochronological framework at the subzonal and species level. This study was triggered by the discovery of a rich Peruvian succession of ammonites, deposited concomitantly with an unusually large number of ash beds. Two major phases of rediversification are observed during the Psiloceras spelae and Angulaticeras zones that correspond to positive peaks in the delta C-13(org) curve, providing a possible link between biodiversity and the global carbon cycle. In the case of the post-extinction recovery, the development of the earliest Hettangian ammonites occurs within the genus Psiloceras, which begins with the occurrence of P. spelae and then explodes into worldwide development of smooth psiloceratids of the Psiloceras planorbis group s.l. This rapid biodiversification likely occurred less than 100 ka after the end-Triassic crisis; the genus Psiloceras occupied all the possible ecological niches worldwide, from the Pacific deep waters to the NW European shallow deposits and also in some rare Tethyan occurrences like at Germig in Tibet. This global dispersion allowed the differentiation of the group in several major phyla, the Schlotheimiidae, Discamphiceratinae, Arietitidae and Lytocerataceae, which were the roots of all other Jurassic and Cretaceous ammonites. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The New Economic Geography literature allows detailed analysis of the factors that determine the location decisions of firms in integrated markets. However, the competitive process is modelled in a rather rudimentary way, and the empirical evidence has usually been obtained from reduced-form econometric specifications. This study describes a structural model that takes into account strategic interactions between firms. We investigate the relationship between the degree of perceived competition ¿ not only from local firms but from firms in other regions ¿ and geographic concentration. The preliminary results indicate that, in aggregate terms, local firms present stronger competition than firms in other regions. Moreover, it is confirmed that greater geographical concentration of production reduces market power, due to the intensification of local competition; however, its impact on production costs is unclear.
Resumo:
Assessing the spatial variability of soil chemical properties has become an important aspect of soil management strategies with a view to higher crop yields with minimal environmental degradation. This study was carried out at the Centro Experimental of the Instituto Agronomico, in Campinas, São Paulo, Brazil. The aim was to characterize the spatial variability of chemical properties of a Rhodic Hapludox on a recently bulldozer-cleaned area after over 30 years of coffee cultivation. Soil samples were collected in a 20 x 20 m grid with 36 sampling points across a 1 ha area in the layers 0.0-0.2 and 0.2-0.4 m to measure the following chemical properties: pH, organic matter, K+, P, Ca2+, Mg2+, potential acidity, NH4-N, and NO3-N. Descriptive statistics were applied to assess the central tendency and dispersion moments. Geostatistical methods were applied to evaluate and to model the spatial variability of variables by calculating semivariograms and kriging interpolation. Spatial dependence patterns defined by spherical model adjusted semivariograms were made for all cited soil properties. Moderate to strong degrees of spatial dependence were found between 31 and 60 m. It was still possible to map soil spatial variability properties in the layers 0-20 cm and 20-40 cm after plant removal with bulldozers.
Resumo:
The loss of biodiversity has become a matter of urgent concern and a better understanding of local drivers is crucial for conservation. Although environmental heterogeneity is recognized as an important determinant of biodiversity, this has rarely been tested using field data at management scale. We propose and provide evidence for the simple hypothesis that local species diversity is related to spatial environmental heterogeneity. Species partition the environment into habitats. Biodiversity is therefore expected to be influenced by two aspects of spatial heterogeneity: 1) the variability of environmental conditions, which will affect the number of types of habitat, and 2) the spatial configuration of habitats, which will affect the rates of ecological processes, such as dispersal or competition. Earlier, simulation experiments predicted that both aspects of heterogeneity will influence plant species richness at a particular site. For the first time, these predictions were tested for plant communities using field data, which we collected in a wooded pasture in the Swiss Jura mountains using a four-level hierarchical sampling design. Richness generally increased with increasing environmental variability and "roughness" (i.e. decreasing spatial aggregation). Effects occurred at all scales, but the nature of the effect changed with scale, suggesting a change in the underlying mechanisms, which will need to be taken into account if scaling up to larger landscapes. Although we found significant effects of environmental heterogeneity, other factors such as history could also be important determinants. If a relationship between environmental heterogeneity and species richness can be shown to be general, recently available high-resolution environmental data can be used to complement the assessment of patterns of local richness and improve the prediction of the effects of land use change based on mean site conditions or land use history.