728 resultados para Sommeil REM
Resumo:
Indicators of surface-water productivity and bottom-water oxygenation have been studied for the age interval from the latest Pleistocene to the Holocene at three holes (679D, 680B, and 68IB) located in the center and at the edges of an upwelling cell at approximately 11°S on the Peruvian continental margin. Upwelling activity was maximal at this latitude during d18O Stages 1 (lower part), 3, the upper part of 5, the lower part of 6, and 7, as documented by high diatom abundance. During these time intervals, the bottom water was poorly oxygenated, as documented by low diversity benthic foraminiferal assemblages that are dominated by B. seminuda s.l. Both surface- and bottom-water-circulation patterns appear to have changed rapidly over short time intervals. Due to changes in surface circulation, the intensity of upwelling decreased, thereby decreasing the concentration of nutrients, and reducing the supply of organic matter to the bottom. Radiolarians became more abundant in the surface waters, and the bottom-water environment was less depleted in oxygen, allowing for the establishment of more diverse benthic foraminiferal assemblages. Surface-water productivity was probably minimal during the early part of d18O Stages 5 and 9, as indicated by the increased abundance of planktonic foraminifers and pteropods and their subsequent preservation.
Resumo:
Qualitative and quantitative food composition, as well as intensity of feeding of beryx-alfonsino Beryx splendens was examined on banks near the Azores. Data are presented with respect to size groups and taking into account type of feeding of males and females. Crustaceans and fishes were constituents of their feeding ration. A tendency toward increase in the number of consumed fishes in the course of ontogenetic development of beryx-alfonsino was noted. Beryx-alfonsino was shown to occupy the trophic level of consumers of the third order performing function of a deep-water predator.
Resumo:
The major magnetic mineral in the turbidites and slumped sediments recovered at Leg 73 drill sites was near to magnetite in composition and in the form of small multidomain particles. There was no variation in magnetic mineralogy with the lithology. The variations in the intensities and directions of the natural remanent magnetization could be explained in terms of postdepositional grain rotations within the wet sediment. In the sands realignment was partial, whereas in some of the slumps the entire remanent magnetization was reset. Fine-particle magnetite was also the main magnetic constituent of the red clays. A significant proportion of a higher-coercivity mineral was also present. The magnetic characteristics of the red clays are explained as a combination of concentration and grain rotation effects. The implications to the assessment of the reliability of paleomagnetic data are discussed. Note: Conversion factors are as follows: 1 Am**2/kg = 1 emu/g, and 80 A/m about 1 Oe.
Resumo:
The composition of 31 samples of Lower Cretaceous (Valanginian to Aptian) sandstone from ODP Sites 638 through 641 was analyzed using the Gazzi-Dickinson point-counting method. The results show that the source of the Valanginian to Hauterivian sand was a continental block, dominated by granitic and/or high-grade-metamorphic rocks. Although these petrologic results do not allow discrimination between various potential continental block provinces, they suggest, in conjunction with seismic profiles and regional considerations, that the source was the Galicia margin or western Iberia. In contrast, the Barremian and Aptian sand is dominated by carbonate grains that were derived from a carbonate platform, probably on Galicia Bank.
Resumo:
Depth fluctuations of the lysocline and calcite compensation depth (CCD) through time were investigated at Deep Sea Drilling Project Site 603, Leg 93. The CCD fell during the middle Miocene at the onset of the Western Boundary Undercurrent, correlated with seismic Horizon X. Subsequently deposited units show fluctuations of the dissolution curve. Major changes in dissolution facies correspond with lithologic boundaries.
Resumo:
We document the waxing and waning of a "proto-warm pool" in the western equatorial Pacific (WEP) based on a study of multi-species planktic foraminiferal isotope ratios and census data spanning the 13.2-5.8 Ma interval at ODP Site 806. We hypothesize that the presence or absence of a proto-warm pool in the WEP, caused by the progressive tectonic constriction of the Indonesian Seaway and modulated by sea level fluctuations, created El Niño/La Niña-like alternations of hydrographic conditions across the equatorial Pacific during the late Miocene. This hypothesis is supported by the general antithetical relationship observed between carbonate productivity and preservation in the western and eastern equatorial Pacific, which we propose is caused by these alternating ocean-climate states. Warming of thermocline and surface waters, as well as a major change in planktic foraminferal assemblages record a two-step phase of proto-warm pool development ~11.6-10 Ma, which coincides with Miocene isotope events Mi5 and Mi6, and sea-level low stands. We suggest that these changes in the biota and structure of the upper water column in the WEP mark the initiation of a more modern equatorial current system, including the development of the Equatorial Undercurrent (EUC), as La Niña-like conditions became established across the tropical Pacific. This situation sustained carbonate and silica productivity in the eastern equatorial Pacific (EEP) at a time when carbonate preservation sharply declined in the Caribbean. Proto-warm pool weakening after ~10 Ma may have contributed to the nadir of a similar "carbonate crash" in the EEP. Cooling of the thermocline and increased abundances of thermocline taxa herald the decay of the proto-warm pool and higher productivity in the WEP, particularly ~ 9.0-8.8 Ma coincident with a major perturbation in tropical nannofossil assemblages. We suggest that this interval of increased productivity records El Niño-like conditions across the tropical Pacific and the initial phase of the widespread "biogenic bloom". Resurgence of a later proto-warm pool in the WEP ~6.5-6.1 Ma may have spurred renewed La Niña-like conditions, which contributed to a strong late phase of the "biogenic bloom" in the EEP.
Resumo:
New maps of free-air and the Bouguer gravity anomalies on the Weddell Sea sector (70-81° S, 6-75° W) of Antarctica are presented. These maps are based on the first computer compilation of available gravity data collected by ''Sevmorgeologia'' in 1976-89 in the southern Weddell Sea and adjacent coasts of western Dronning Maud Land (WDML) and Coats Land. The accomplished gravity studies comprise airborne observations with a line spacing of about 20 km and conventional measurements at over-the-ice points, which were spaced at 10-30 km and supplemented by seismic soundings. Hence, anomalies on the maps represent mainly large-scale and deep crustal features. The dominant feature in free-air gravity map is a large dipolar gravity anomaly stretching along the continental margin. Following the major grain of seabed morphology this shelf-edge/slope anomaly (SESA) is clearly divided into three segments characterized by diverse anomaly amplitudes, wavelengths and trends. They are associated with continental margins of different geotectonic provinces of Antarctica surrounding the Weddell Sea. Apparent distinctions in the SESA signatures are interpreted as the gravity expression of tectonic, deep crustal structure segmentation of the continental margin. The prominent gravity highs (100-140 mGal) of the shelf edge anomaly mapped along WDML are assumed to represent high-density mantle injections intruded into the middle/lower crust during initial rifting of continental breakup. Enlarged wavelengths and diminished amplitudes of the gravity anomaly westwards, along the Weddell Sea embayment (WSE) margin, reflect a widening of the continental slope and a significant increase in thickness of underlying sediment strata. Low amplitude, negative free-air anomalies in the Filchner-Ronne Ice Shelves (FRIS) contrast sharply with the dominating positive anomalies offshore. This indicates a greater sedimentary thickness of the basin in this area. Crustal response to the enlarged sediment load is impressed in mostly positive features of the Bouguer gravity field observed here. Two pronounced positive Bouguer anomalies of 50-70 mGal and an average widths of 200 km dominate the Weddell Sea embayment margins towards the Antarctic Peninsula and the East Antarctic craton. They correlate well with very deep seabed troughs (> 1000 m below sea level). The gravity highs are most likely caused by a shallow upper mantle underneath graben-rift structures evolved at the margins of the WSE basin. A regional zone (> 100 km in width) of the prominent Bouguer and free-air negative anomalies (-40 to -60 mGal) adjacent Coats Land to the north of the ice shelf edge may indicate the presence of the thick old cratonic crust far offshore beneath the Weddell Sea Embayment.
Resumo:
Seven cores from the West African continental margin in 12-18° N have been investigated by means of a coarse fraction analysis. Four of the seven cores contain allochthonous material: turbidites and debris flow deposits. The source of the allochthonous material is in about 300-600 m water depth. The age of the slide induced debris flow deposits is at the end of oxygen isotope stage 2. One debris flow deposit is covered by a turbidite (core GIK13211-1). The turbidites in the deep-sea core GIK13207-3 originate from river-influenced sediments from the West-African continental margin, whereas the autochthonous sequences are influenced by volcanic material from the Cape Verde Islands. Particle by particle supply from upper slope areas has been found in all four cores from the continental slope. Current sorting occurs on the submarine diapir (core GIK13289-3), whereas core GIK13291-1 on the NW-flanc, 200 m below core GIK13289-3, has no current sorting, except for stage 1 and parts of stage 5. The current sorting is reflected by parallel variations of median diameters of whole tests and of fragments of planktonic foraminifers, by higher median diameters of foraminifers on top of the diapir, by reduced accumulation rates and increased sand fraction percentages in core GIK13289-3 compared to core GIK13291-1. The Late Quarternary climatic history of the West-African near coastal area (12-18° N) has been redrawn: - in oxygen isotope stage 1 a humid climate is found in 12-18° N (This "humid impression" in 18° N, which is actually an arid area, is due to the poleward directed undercurrent, which transports Senegal river material to the north). - in oxygen isotope stage 2 an arid climate existed in 14-18° N, whereas in 12° N river discharfe persisted. But within stage 2 dune formation occured in 12° N on the (dry) shelf, additionally to fluviatile sediment input. - Older periods are preserved in autochthonous sediments of core GIK13289-3 and GIK13291-1, where oxygen stage 3,5 and 7 (the latter only in core GIK13289-3 present) show a humid climate (as well as in stage 5 of core GIK13255-3), interrupted by short arid intervals in core GIK12389-3, and stage 4 and 6 show an arid climate, interrupted by short humid periods The allochthonous stage 5 sediment in core GIK13211-1 also reflects a humid climate. The dissolution of planktonic foraminifers is strongest in th eLate Holocene and shows a minimum in the early Holocene, where also pteropods are preserved. The degree of carbonate dissolution is related mainly to the fine matter content (< 63 µm) whereas water depth is a less decisvive factor.
Resumo:
Surface sediments from 5 profiles between 30 and 3000 m water depth off W Africa (12-19° N) have been studied for their sand fraction composition and their total calcium carbonate and organic matter contents to evaluate the effect of climatic and hydrographic factors on actual sedimentation. On the shelf and upper slope (< 500 m), currents prevent the deposition of significant amounts of fine-grained material. The sediments forming here are characterized by high sand contents (> 60 %; in most samples > 89 %), low organic carbon contents (in most samples < 0.8 %), high median diameters of the sand fraction (120-500 µm), and by a predominance of quartz and biogenic relict shells (most abundant: molluscs and bryozoans) in the sand fraction. Median diameters of total sand fraction and of major biogenic sand fraction components (biogenic relict material, benthonic molluscs, benthonic and planktonic foraminifers) co-vary to some extent and show maximum values in 100-300 m water depth, reflectingthe sorting effect of currents (perhaps the northward flowing undercurrent). In this water depth, biogenic relict material is considerably enriched relative to wuartz, the second dominating sand fraction component on the shelf and upper slope, resulting in distinct calcium carbonate maxima of the bulk sediments. The influence of the undercurrent is also reflected in a northward transport of fine grained river load and perhaps in the distribution of the red stained, coarse silt and sand-size clay aggregates, which show maxima in 300-500 m water depth. They probably originate from tropical soils. Abundant coarse red-stained quartz on the shelf off Cape Roxo (12-130° N) suggests a southward extension of last glacial dune fields to this latitude. Below about 500 m water depth, current influence becomes negligible - as indicated by a strong decrease in sand content, a concomitant increase in sedimentary organic carbon contents (up to 2.5-3.5 %), and the occurence of high mica/quartz ratios in the sand fraction. Downslope transport, presumably due to the bioturbation mechanism, is indicated by the presence of coarse shelf-borne particles (glauconite, relict shells) down to about 1000 m water depth. The fine/coarse ratio (clay + silt/sand) of the sediments from water deoth > 500 m never exceed a value of 11 in northern latitudes (19° - 26° N), but shows distinct maxima, ranging from 50 to 120, at latitudes 18°, 17° 15°30', and 14° N in about 2000 m water depth. This distribution is attributed to the deposition of fine-grained river load at the continental slope between 18° and 14° N, brought into the sea by the Senegal and souther rivers and transported northward ny the undercurrent. Strong calcium carbonate dissolution is indicated by the complete disappearance of pteropodes (aragonite) and high fragmentation of the planktoic foraminifers (calcite) in sediments from water depth > 300-600 m. Fragmentation ratios of planktonic foraminifers were found to depend on the organic carbon/carbonate ratios of the sediment suggesting that calcite dissolution at the sea bottom may also be significant in shelf and continental slope water depths if the organic matter/carbonate ratio of the surface sediment is high and the test remain long enough within the oxidizing layer on the top of the sulfate reduction zone. The fact that in the region under study intensity and anual duration of upwelling decrease from north to south is neither reflected in the composition on the sand fraction (i.e. radiolarian and fish debris contents, radiolarian/planktonic foraminiferal ratios, benthos/plankton ratios of foraminifers), nor in the sedimentary organic carbon distribution. On the contrary, these parameters even show in comparable water depths a tendency for highest values in the south, partly because primary production rates remain high in the whole region, particularly on the shelf, due to the nutrient input by rivers in the south. In addition, several hydrographic, sedimentological and climatic factors severely affect their distribution - for example currents, dissolution, grain size composition, deposition of river load, and bulk sedimentation rats.
Resumo:
This petrological study of the lower Aptian Oceanic Anoxic Event (OAE1a) focused on the nature of the organic-rich interval as well as the tuffaceous units above and below it. The volcaniclastic debris deposited just prior to the OAE1a is consistent with reactivation of volcanic centers across the Shatsky Rise, concurrent with volcanism on the Ontong Java Plateau. This reactivation may have been responsible for the sub-OAE1a unconformity. Soon after this volcanic pulse, anomalous amounts of organic matter accumulated on the rise, forming a black shale horizon. The complex textures in the organic-rich intervals suggest a history of periodic anoxia, overprinted by bioturbation. Components include pellets, radiolarians, and fish debris. The presence of carbonate-cemented radiolarite under the OAE1a intervals suggests that there has been large-scale remobilization of carbonate in the system, which in turn may explain the absence of calcareous microfossils in the section. The volcanic debris in the overlying tuffaceous interval differs in that it is significantly epiclastic and glauconitic. It was likely derived from an emergent volcanic edifice.
Resumo:
In this study we present a late Miocene - early Pliocene record of sixty-four zones with prominent losses in the magnetic susceptibility signal, taken on a sediment drift (ODP Site 1095) on the Pacific continental rise of the West Antarctic Peninsula. The zones are comparable in shape and magnitude and occur commonly at glacial-to-interglacial transitions. High resolution records of organic matter, magnetic susceptibility and clay mineral composition from early Pliocene intervals demonstrate that neither dilution effects nor provenance changes of the sediments have caused the magnetic susceptibility losses. Instead, reductive dissolution of magnetite under suboxic conditions seems to be the most likely explanation. We propose that during the deglaciation exceptionally high organic fluxes in combination with weak bottom water currents and prominent sediment draping diatom ooze layers produced temporary suboxic conditions in the uppermost sediments. It is remarkable that synsedimentary suboxic conditions can be observed in one of the best ventilated open ocean regions of the World.
Resumo:
The book summarizes data on distribution and composition of sedimentary material suspended in waters of the Atlantic Ocean and its seas. Results of observations of Soviet and foreign expeditions are given. Distribution of suspended matter in sections across the ocean, as well as in the most studied seas are shown. New data on grain size, mineral and chemical composition of suspended matter are published. Summary of history of investigation of bottom sediments from the Atlantic Ocean from the first scientific cruises to the present is done. A brief description of sediment types in the ocean and a detailed description of Mediterranean Sea sediments are given.
Resumo:
Ice-wedge polygon (IWP) mires in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from a low-centered IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, d13C), stable water isotopes (d18O, dD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions in the IWP field that developed after drainage (SU3: 3120 cal yrs BP to AD 2012). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatoms species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene.
Resumo:
Middle/late Miocene to early Pliocene sedimentary sequences along the continental margin of southwest Africa have changes that correspond to the carbonate crash (12-9 Ma) and biogenic bloom events (~7-4 Ma) described in the equatorial Pacific by Farrell et al. (1995, doi:10.2973/odp.proc.sr.138.143.1995). To explore the origins of these changes, we analyzed the carbon and coarse fraction contents of sediments from ODP Sites 1085, 1086, and 1087 at a time resolution of 5 to 30 kyr. Several major drops in CaCO3 concentration between 12 and 9 Ma are caused by dilution from major increases in clastic input from the Oranje River during global sea level regressions. Abundant pyrite crystals and good preservation of fish debris reflect low oxygenation of bottom/pore waters. Regional productivity was enhanced during the time equivalent to the carbonate crash period. Higher benthic/planktic foraminiferal ratios indicate that CaCO3 dissolution at Site 1085 peaked between 9 to 7 Ma, which was after the global carbonate crash. This period of enhanced dissolution suggests that Site 1085 was located within a low-oxygen water mass that dissolved CaCO3 more easily than North Atlantic Deep Water, which began to bathe this site at 7 Ma. At 7 to 6 Ma, the onset of the biogenic bloom, increases and variations in total organic carbon and benthic foraminiferal accumulation rates show that paleoproductivity increased significantly above values observed during the carbonate crash period and fluctuated widely. We attribute the late Miocene paleoproductivity increase off southwest Africa to ocean-wide increases in nutrient supply and delivery.
Resumo:
Vast areas on the Tibetan Plateau are covered by alpine sedge mats consisting of different species of the genus Kobresia. These mats have topsoil horizons rich in rhizogenic organic matter which creates turfs. As the turfs have recently been affected by a complex destruction process, knowledge concerning their soil properties, age and pedogenesis are needed. In the core area of Kobresia pygmaea mats around Nagqu (central Tibetan Plateau, ca. 4500 m a.s.l.), four profiles were subjected to pedological, paleobotanical and geochronological analyses concentrating on soil properties, phytogenic composition and dating of the turf. The turf of both dry K. pygmaea sites and wet Kobresia schoenoides sites is characterised by an enrichment of living (dominant portion) and dead root biomass. In terms of humus forms, K. pygmaea turfs can be classified as Rhizomulls mainly developed from Cambisols. Wet-site K. schoenoides turfs, however, can be classified as Rhizo-Hydromors developed from Histic Gleysols. At the dry sites studied, the turnover of soil organic matter is controlled by a non-permafrost cold thermal regime. Below-ground remains from sedges are the most frequent macroremains in the turf. Only a few pollen types of vascular plants occur, predominantly originating from sedges and grasses. Large amounts of microscopic charcoal (indeterminate) are present. Macroremains and pollen extracted from the turfs predominantly have negative AMS 14C ages, giving evidence of a modern turf genesis. Bulk-soil datings from the lowermost part of the turfs have a Late Holocene age comprising the last ca. 2000 years. The development of K. pygmaea turfs was most probably caused by an anthropo(zoo)-genetically initiated growth of sedge mats replacing former grass-dominated vegetation ('steppe'). Thus the turfs result from the transformation of pre-existing topsoils comprising a secondary penetration and accumulation of roots. K. schoenoides turfs, however, are characterised by a combined process of peat formation and penetration/accumulation of roots probably representing a (quasi) natural wetland vegetation.