980 resultados para Solid-phase micro-extraction
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method was developed for the differential-pulse cathodic stripping voltammetric determination of ceftazidime with a hanging mercury drop electrode using its reduction peak at -0.43 V in Britton-Robinson buffer pH 4.0. The optimum accumulation potential and time were -0.15 V and up to 60 s, respectively. Linear calibration graphs were obtained from 1 x 10(-8) M and 1.5 x 10(-7) M. The limit of determination was calculated to be 5 x 10(-9) M. The coefficient of variation was 4% (n = 7) at 1 x 10(-7) M ceftazidime. The effect of various components of urine on the voltammetric response was studied, and creatinine, uric acid, urea, and glucose were shown to interfere in the method. Ceftazidime bound to human albumin gives a unique stripping peak at -0.48 V. Recoveries of 87% +/- 2% of the ceftazidime (n = 5) were obtained from urine spiked with 1.27 mu g ml(-1) using C-18 solid phase extraction cartridges. (C) 1997 Academic Press.
Resumo:
A solid-phase extraction and chromatography-flame ionization detection (GC-FID) method has been developed for the routine analysis of psoralen, bergapten, isopimpinellin and pimpinellin in creams and pomades employed in Brazil for the treatment of vitiligo. The calibration curve for psoralen was linear in the range 10-100 mu g ml(-1), for bergapten 5-90 mu g ml(-1), for pimpinellin 10-90 mu g ml(-1) and for isopimpinellin 5-100 mu g ml(-1). The best recoveries of the furanocoumarins in the creams analysed were 94-97%, whereas in the pomades, recoveries were 94-96%. The R.S.D. of the quantitative analysis of the furanocoumarins in the products analyses were within 5%. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
A method was developed to determine simazine, atrazine and their metabolite, 2-chloro-4,6-diamino-1,3,5-triazine, in urine. The presence of these herbicides in urine may reflect possible exposure to pesticides. Sample preparation involved protein precipitation and solid-phase extraction. The samples were analyzed by high-performance liquid chromatography-mass spectrometry. The detection limits were 0.4 mug/l and the analytes have a linear response in the interval 6-800 mug/l. The precision of the method was reflected in the RSD of <2.4% for the herbicides studied. Based on the detectable herbicide levels from spiked urine samples collected from unexposed volunteers, this method can be used to determine the low levels necessary for establishing reference values of the selected herbicides and the metabolite. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Propanil and its major degradation product, 3,4-dichloroaniline (DCA), were monitored in surface water and soil samples from two rice fields of the Ebre Delta area (Tarragona, Spain) following agricultural application. On-line solid-phase extraction (SPE) (water) and Soxhlet extraction (soil) followed by liquid chromatography/diode array detection (LC/DAD) were used for the trace determination of both compounds. Unequivocal confirmation/identification was conducted by using liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry, LC/APCI/MS (using negative and positive ionization modes). Concentrations of the herbicide propanil in water samples varied from 1.9 to 55.9 mu g/L. Propanil degraded very rapidly to DCA, and high concentrations of this product were found, varying from 16.5 to 470 mu g/L in water and 119 +/- 22 mu g/kg in soil samples. No detectable DCA (<0.001%) was found in the applied pesticide formulation, indicating that DCA formation took place after propanil application. These field results compared favorably with laboratory experiments showing that humic interactions had a strong influence on the pesticide degradation. The half-lifes under real conditions for propanil and DCA, calculated using a first-order decay, were 1.2 and 1.6 days, respectively.
Resumo:
The use of Saccharomyces cerevisiae as a substrate to selectively retain Sn(II) and Sn(IV) has been investigated. Several factors affecting the retention of the analytes by yeast, such as pH, amount of biomass, temperature and time of contact were evaluated. Based on this study, a method for determination of Sn(II) and Sn(IV) combining inductively coupled plasma optical emission spectrometry (ICP OES) and solid phase extraction using Saccharomyces cerevisiae is proposed. The procedure consists of the selective retention of Sn(IV) by yeast at pH = 2.0 while Sn(II) remains in solution. Determination of tin in the solid phase was easily carried out by submitting a slurry of the yeast (0.5 g/40 mL) directly to ICP OES. The precision of the extraction procedure was characterized by an RSD lower than 4%. The detection limits of tin (3 sigma) in the solid phase and the liquid phase were 1.1 and 0.7 mu g L-1, respectively. The proposed approach was evaluated for determination of Sn(II) and Sn(IV) in spiked river water and real samples of industrial waste water (untreated and treated). For all samples, recoveries of spiked Sn(II) and Sn(IV) were between 85 and 112%.
Resumo:
The use of Saccharomyces cerevisiae as a sorbent material to separate Cd(II) and Cd-metallothionein complex (Cd-MT) has been explored. Solid-liquid phase extractions were carried out in batch mode and the main parameters of the process (pH, temperature, time of incubation, amount of biomass and analyte) were evaluated. Under optimized conditions, the yeast quantitatively retain (94 +/- 5%) the Cd(II) while 97 +/- 2% of the Cd-MT remain in the supernatant. on base of the findings of this study, a simple method is proposed to determine Cd(II) and Cd-MT in cytosols extracted from mouse kidney and crab hepatopancreas. Inductively coupled plasma optical emission spectrometry was used to quantify the analytes in solid and liquid phase. Determination of Cd in the solid phase was carried out by introducing a slurry of the yeast (0.0625 g/10 mL) directly to the inductively coupled plasma optical emission spectrometer. Mixed standards solutions, which also have been submitted to the extraction procedure, were used to quantify the analytes in the samples. Thus, matrix effects due to nebulization of the slurry were overcame. Limits of detection (3 sigma) for Cd(II) and Cd-MT were 1.5 and 1.2 mu g L-1, respectively. Relative standard deviations of signals were 4.2% for measurements in the slurry of solid phase and 2.1% for measurements in the liquid phase. Recoveries of the analytes in cytosol samples were between 76 and 114%. The concentrations of Cd(II) (2.4 +/- 0.5 mu g L-1) and Cd-MT (3.0 +/- 0.5 mu g L-1) found by using the proposed approach were close to those found by tangential-flow ultrafiltration technique (2.6 +/- 0.7 mu g L-1 for Cd(II) and 3.7 +/- 1.7 mu g L-1 for Cd-MT).
Resumo:
Micro-scale (sub-pmol) isolation and sequence determination of three peptides from the venom of the solitary spider wasp Cyphononyx dorsalis is described. We isolated two novel peptides Cd-125 and Cd-146 and a known peptide Thr(6)-bradykinin from only two venom sacs of solitary spider wasp Cyphononyx dorsalis without bioassay-guided fractionation. but instead guided by MALDI-TOF MS. The MALDI-TOF MS analysis of each fraction showed the purity and molecular weight of the components, which led to the isolation of the peptides virtually without loss of sample amount. The sequences of the novel peptides Cd-125 (Asp-Thr-Ala-Arg-Leu-Lys-Trp-His) and Cd-146 (Ser-Glu-Thr-Gly-Asn-Thr-Val-Thr-Val-Lys-Gly-Phe-Ser-Pro-Leu-Arg) were determined by Edman degradation together with mass spectrometry. and finally corroborated by solid-phase synthesis. The known peptide Thr(6)-bradykinin (Arg-Pro-Pro-Gly-Phe-Thr-Pro-Phe-Arg) was identified by comparison with the synthetic authentic specimen. This is the first example for any kinins to be found in Pompilidae wasp venoms. The procedure reported here can be applicable to studies on many other components of solitary wasp venoms with limited sample availability. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Diffusive gradients in thin films (DGT) and tangential-flow ultrafiltration (TF-UF) were combined for fractionation of Al and Cu in river water containing high content of dissolved organic carbon. A procedure based on ultrafiltration data is proposed to determine diffusion coefficients of the analytes in water samples and model solutions containing both free metal (M) and complex (metal - humic substance). Aiming to evaluate the accuracy of the proposed approach, the DGT results were compared with those from a protocol for determination of labile Al and Cu based on solid phase extraction (SPE). Good agreement between data from DGT and SPE were attained for model solutions. For analysis of real organic-rich water samples, differences between DGT and SPE measurements were consistent with the time-scales of the techniques. The concentration of labile Al determined by DGT were lower than the total dissolved concentrations (determined by inductively coupled plasma mass spectrometry) and exceeded the ultrafiltered concentration, indicating that inorganic Al species (species small enough to pass through 1 kDa membrane) were minor species as compared with Al organic complexes. For both Al and Cu, there were species not measured by DGT as they are not sufficiently labile. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this paper is to develop an electroanalytical method based on square-wave voltammetry (SWV) for the determination of the solvent blue 14 (SB-14) in fuel samples. The electrochemical reduction of SB-14 at glassy carbon electrode in a mixture of Britton-Robinson buffer with N,N-dimethyiformamide (1:1, v/v) presented a well-defined peak at-0.40 V vs. Ag/AgCl. All parameters of the SWV technique were optimized and the electroanalytical method presented a linear response from 1.0 x 10(-6) to 6.0 x 10(-6) mol L-1 (r = 0.998) with a detection limit of 2.90 x 10(-7) mol L-1. The developed method was successfully utilized in the quantification of the dye SB-14 in kerosene and alcohol samples with average recovery from 93.00 to 98.10%.
Resumo:
An analytical method for the determination of aldicarb, and its two major metabolites, aldicarb sulfoxide and aldicarb sulfone in fruits and vegetables is described. Briefly the method consisted of the use of a methanolic extraction, liquid-liquid extraction followed by solid-phase extraction clean-up. Afterwards, the final extract is analyzed by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS). The specific fragment ion corresponding to [M-74](+) and the protonated molecular [M+K](+) ion were used for the unequivocal determination of aldicarb and its two major metabolites. The analytical performance of the proposed method and the results achieved were compared with those obtained using the common analytical method involving LC with post-column fluorescence detection (FL). The limits of detection varied between 0.2 and 1.3 ng but under LC-FL were slightly lower than when using LC-APCI-MS. However both methods permitted one to achieve the desired sensitivity for analyzing aldicarb and its metabolites in vegetables. The method developed in this work was applied to the trace determination of aldicarb and its metabolites in crop and orange extracts. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
A simple and efficient method for the simultaneous gas chromatographic determination of ten organochlorine pesticides (alpha-HCH, beta-HCH, gamma-HCH, p,p'-DDT, o,p'-DDT, p,p'-DDD, p,p'-DDE, aldrin, endrin, and dieldrin) and six congeners of PCBs (PCB 28, 52, 118, 138, 153, and 180) in municipal solid waste compost is described. The procedure involves a solid-phase dispersion matrix using celite as dispersant sorbent, alumina as clean up sorbent and hexane-dichloromethane (7:3, v/v) mixture as eluting solvent. An additional purification step with copper was necessary to eliminate sulphur. Analysis of the sample was performed by GC-ECD. The method was validated with fortified samples at two concentration levels (0.025 and 0.05 mg kg(-1)). Average recovery ranged from 77 to 121% with relative standard deviation between 1 and 18%. The detection limits, which ranged from 0.003 to 0.01 mg kg-1, were lower than those established by the Baden-Wurttemberg directive (0.033 mg kg(-1)).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)