907 resultados para Solar energy in agriculture
Resumo:
"NBSIR 76-1562."
Resumo:
Report year ends Sept. 30.
Resumo:
Caption title.
Resumo:
Mode of access: Internet.
Resumo:
This thesis examined solar thermal collectors for use in alternative hybrid solar-biomass power plant applications in Gujarat, India. Following a preliminary review, the cost-effective selection and design of the solar thermal field were identified as critical factors underlying the success of hybrid plants. Consequently, the existing solar thermal technologies were reviewed and ranked for use in India by means of a multi-criteria decision-making method, the Analytical Hierarchy Process (AHP). Informed by the outcome of the AHP, the thesis went on to pursue the Linear Fresnel Reflector (LFR), the design of which was optimised with the help of ray-tracing. To further enhance collector performance, LFR concepts incorporating novel mirror spacing and drive mechanisms were evaluated. Subsequently, a new variant, termed the Elevation Linear Fresnel Reflector (ELFR) was designed, constructed and tested at Aston University, UK, therefore allowing theoretical models for the performance of a solar thermal field to be verified. Based on the resulting characteristics of the LFR, and data gathered for the other hybrid system components, models of hybrid LFR- and ELFR-biomass power plants were developed and analysed in TRNSYS®. The techno-economic and environmental consequences of varying the size of the solar field in relation to the total plant capacity were modelled for a series of case studies to evaluate different applications: tri-generation (electricity, ice and heat), electricity-only generation, and process heat. The case studies also encompassed varying site locations, capacities, operational conditions and financial situations. In the case of a hybrid tri-generation plant in Gujarat, it was recommended to use an LFR solar thermal field of 14,000 m2 aperture with a 3 tonne biomass boiler, generating 815 MWh per annum of electricity for nearby villages and 12,450 tonnes of ice per annum for local fisheries and food industries. However, at the expense of a 0.3 ¢/kWh increase in levelised energy costs, the ELFR increased saving of biomass (100 t/a) and land (9 ha/a). For solar thermal applications in areas with high land cost, the ELFR reduced levelised energy costs. It was determined that off-grid hybrid plants for tri-generation were the most feasible application in India. Whereas biomass-only plants were found to be more economically viable, it was concluded that hybrid systems will soon become cost competitive and can considerably improve current energy security and biomass supply chain issues in India.
Resumo:
For remote, semi-arid areas, brackish groundwater (BW) desalination powered by solar energy may serve as the most technically and economically viable means to alleviate the water stresses. For such systems, high recovery ratio is desired because of the technical and economical difficulties of concentrate management. It has been demonstrated that the current, conventional solar reverse osmosis (RO) desalination can be improved by 40–200 times by eliminating unnecessary energy losses. In this work, a batch-RO system that can be powered by a thermal Rankine cycle has been developed. By directly recycling high pressure concentrates and by using a linkage connection to provide increasing feed pressures, the batch-RO has been shown to achieve a 70% saving in energy consumption compared to a continuous single-stage RO system. Theoretical investigations on the mass transfer phenomena, including dispersion and concentration polarization, have been carried out to complement and to guide experimental efforts. The performance evaluation of the batch-RO system, named DesaLink, has been based on extensive experimental tests performed upon it. Operating DesaLink using compressed air as power supply under laboratory conditions, a freshwater production of approximately 300 litres per day was recorded with a concentration of around 350 ppm, whilst the feed water had a concentration range of 2500–4500 ppm; the corresponding linkage efficiency was around 40%. In the computational aspect, simulation models have been developed and validated for each of the subsystems of DesaLink, upon which an integrated model has been realised for the whole system. The models, both the subsystem ones and the integrated one, have been demonstrated to predict accurately the system performance under specific operational conditions. A simulation case study has been performed using the developed model. Simulation results indicate that the system can be expected to achieve a water production of 200 m3 per year by using a widely available evacuated tube solar collector having an area of only 2 m2. This freshwater production would satisfy the drinking water needs of 163 habitants in the Rajasthan region, the area for which the case study was performed.
Resumo:
This dissertation studies capacity investments in energy sources, with a focus on renewable technologies, such as solar and wind energy. We develop analytical models to provide insights for policymakers and use real data from the state of Texas to corroborate our findings.
We first take a strategic perspective and focus on electricity pricing policies. Specifically, we investigate the capacity investments of a utility firm in renewable and conventional energy sources under flat and peak pricing policies. We consider generation patterns and intermittency of solar and wind energy in relation to the electricity demand throughout a day. We find that flat pricing leads to a higher investment level for solar energy and it can still lead to more investments in wind energy if considerable amount of wind energy is generated throughout the day.
In the second essay, we complement the first one by focusing on the problem of matching supply with demand in every operating period (e.g., every five minutes) from the perspective of a utility firm. We study the interaction between renewable and conventional sources with different levels of operational flexibility, i.e., the possibility
of quickly ramping energy output up or down. We show that operational flexibility determines these interactions: renewable and inflexible sources (e.g., nuclear energy) are substitutes, whereas renewable and flexible sources (e.g., natural gas) are complements.
In the final essay, rather than the capacity investments of the utility firms, we focus on the capacity investments of households in rooftop solar panels. We investigate whether or not these investments may cause a utility death spiral effect, which is a vicious circle of increased solar adoption and higher electricity prices. We observe that the current rate-of-return regulation may lead to a death spiral for utility firms. We show that one way to reverse the spiral effect is to allow the utility firms to maximize their profits by determining electricity prices.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
This paper presents the determination of a mean solar radiation year and of a typical meteorological year for the region of Funchal in the Madeira Island, Portugal. The data set includes hourly mean and extreme values for air temperature, relative humidity and wind speed and hourly mean values for solar global and diffuse radiation for the period 2004-2014, with maximum data coverage of 99.7%. The determination of the mean solar radiation year consisted, in a first step, in the average of all values for each pair hour/day and, in a second step, in the application of a five days centred moving average of hourly values. The determination of the typical meteorological year was based on Finkelstein-Schafer statistics, which allows to obtain a complete year of real measurements through the selection and combination of typical months, preserving the long term averages while still allowing the analysis of short term events. The typical meteorological year validation was carried out through the comparison of the monthly averages for the typical year with the long term monthly averages. The values obtained were very close, so that the typical meteorological year can accurately represent the long term data series. The typical meteorological year can be used in the simulation of renewable energy systems, namely solar energy systems, and for predicting the energy performance of buildings.
Resumo:
Renewable energy technologies have long-term economic and environmental advantages over fossil fuels, and solar power is the most abundant renewable resource, supplying 120 PW over earth’s surface. In recent years the cost of photovoltaic modules has reached grid parity in many areas of the world, including much of the USA. A combination of economic and environmental factors has encouraged the adoption of solar technology and led to an annual growth rate in photovoltaic capacity of 76% in the US between 2010 and 2014. Despite the enormous growth of the solar energy industry, commercial unit efficiencies are still far below their theoretical limits. A push for thinner cells may reduce device cost and could potentially increase device performance. Fabricating thinner cells reduces bulk recombination, but at the cost of absorbing less light. This tradeoff generally benefits thinner devices due to reduced recombination. The effect continues up to a maximum efficiency where the benefit of reduced recombination is overwhelmed by the suppressed absorption. Light trapping allows the solar cell to circumvent this limitation and realize further performance gains (as well as continue cost reduction) from decreasing the device thickness. This thesis presents several advances in experimental characterization, theoretical modeling, and device applications for light trapping in thin-film solar cells. We begin by introducing light trapping strategies and discuss theoretical limits of light trapping in solar cells. This is followed by an overview of the equipment developed for light trapping characterization. Next we discuss our recent work measuring internal light scattering and a new model of scattering to predict the effects of dielectric nanoparticle back scatterers on thin-film device absorption. The new model is extended and generalized to arbitrary stacks of stratified media containing scattering structures. Finally, we investigate an application of these techniques using polymer dispersed liquid crystals to produce switchable solar windows. We show that these devices have the potential for self-powering.
Resumo:
Solar resource assessment is essential for the different phases of solar energy projects, such as preliminary design engineering, financing including due diligence and, later, insurance phases. An important aspect is the long term resource estimation. This kind of estimation can only be obtained through the statistical analysis of long-term data series of solar radiation measurements, preferably ground measurements. This paper is a first step in this direction, with an initial statistical analysis performed over the radiation data from a national measurement network, consisting of eighty-nine meteorological stations. These preliminary results are presented in figures that represent the annual average values of Global Horizontal Irradiation (GHI) and its Variability in the Portuguese continental territory. These results show that the South of Portugal is the most suitable area for the implementation of medium to large scale solar plants.