933 resultados para Soils, Radioactive substances in


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon sequestration in agricultural, forest, and grassland soils has been promoted as a means by which substantial amounts of CO2 may be removed from the atmosphere, but few studies have evaluated the associated impacts on changes in soil N or net global warming potential (GWP). The purpose of this research was to ( 1) review the literature to examine how changes in grassland management that affect soil C also impact soil N, ( 2) assess the impact of different types of grassland management on changes in soil N and rates of change, and (3) evaluate changes in N2O fluxes from differently managed grassland ecosystems to assess net impacts on GWP. Soil C and N stocks either both increased or both decreased for most studies. Soil C and N sequestration were tightly linked, resulting in little change in C: N ratios with changes in management. Within grazing treatments N2O made a minor contribution to GWP (0.1-4%), but increases in N2O fluxes offset significant portions of C sequestration gains due to fertilization (10-125%) and conversion (average = 27%). Results from this work demonstrate that even when improved management practices result in considerable rates of C and N sequestration, changes in N2O fluxes can offset a substantial portion of gains by C sequestration. Even for cases in which C sequestration rates are not entirely offset by increases in N2O fluxes, small increases in N2O fluxes can substantially reduce C sequestration benefits. Conversely, reduction of N2O fluxes in grassland soils brought about by changes in management represents an opportunity to reduce the contribution of grasslands to net greenhouse gas forcing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Soil respiration in semiarid ecosystems responds positively to temperature, but temperature is just one of many factors controlling soil respiration. Soil moisture can have an overriding influence, particularly during the dry/warm portions of the year. The purpose of this project was to evaluate the influence of soil moisture on the relationship between temperature and soil respiration. Soil samples collected from a range of sites arrayed across a climatic gradient were incubated under varying temperature and moisture conditions. Additionally, we evaluated the impact of substrate quality on short-term soil respiration responses by carrying out substrate-induced respiration assessments for each soil at nine different temperatures. Within all soil moisture regimes, respiration rates always increased with increase in temperature. For a given temperature, soil respiration increased by half (on average) across moisture regimes; Q(10) values declined with soil moisture from 3.2 (at -0.03 MPa) to 2.1 (-1.5 MPa). In summary, soil respiration was generally directly related to temperature, but responses were ameliorated with decrease in soil moisture. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thermogravimetry combined with evolved gas mass spectrometry has been used to ascertain the stability of the soil minerals destinezite and diadochite. These two minerals are identical except for their morphology. Diadochite is amorphous whereas destinezite is crystalline. Both minerals are found in soils. It is important to understand the stability of these minerals because soils are subject to bush fires especially in Australia. The thermal analysis patterns of the two minerals are similar but not identical. Subtle differences are observed in the DTG patterns. For destinezite, two DTG peaks are observed at 129 and 182°C attributed to the loss of hydration water, whereas only a broad peak with maximum at 84°C is observed for diadochite. Higher temperature mass losses at 685°C for destinezite and 655°C for diadochite, based upon the ion current curves, are due to sulphate decomposition. This research has shown that at low temperatures the minerals are stable but at high temperatures, as might be experienced in a bush fire, the minerals decompose.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract As regional and continental carbon balances of terrestrial ecosystems become available, it becomes clear that the soils are the largest source of uncertainty. Repeated inventories of soil organic carbon (SOC) organized in soil monitoring networks (SMN) are being implemented in a number of countries. This paper reviews the concepts and design of SMNs in ten countries, and discusses the contribution of such networks to reducing the uncertainty of soil carbon balances. Some SMNs are designed to estimate country-specific land use or management effects on SOC stocks, while others collect soil carbon and ancillary data to provide a nationally consistent assessment of soil carbon condition across the major land-use/soil type combinations. The former use a single sampling campaign of paired sites, while for the latter both systematic (usually grid based) and stratified repeated sampling campaigns (5–10 years interval) are used with densities of one site per 10–1,040 km². For paired sites, multiple samples at each site are taken in order to allow statistical analysis, while for the single sites, composite samples are taken. In both cases, fixed depth increments together with samples for bulk density and stone content are recommended. Samples should be archived to allow for re-measurement purposes using updated techniques. Information on land management, and where possible, land use history should be systematically recorded for each site. A case study of the agricultural frontier in Brazil is presented in which land use effect factors are calculated in order to quantify the CO2 fluxes from national land use/management conversion matrices. Process-based SOC models can be run for the individual points of the SMN, provided detailed land management records are available. These studies are still rare, as most SMNs have been implemented recently or are in progress. Examples from the USA and Belgium show that uncertainties in SOC change range from 1.6–6.5 Mg C ha−1 for the prediction of SOC stock changes on individual sites to 11.72 Mg C ha−1 or 34% of the median SOC change for soil/land use/climate units. For national SOC monitoring, stratified sampling sites appears to be the most straightforward attribution of SOC values to units with similar soil/land use/climate conditions (i.e. a spatially implicit upscaling approach). Keywords Soil monitoring networks - Soil organic carbon - Modeling - Sampling design

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Iron (Fe) biogeochemistry is potentially of environmental significance in plantation-forested, subtropical coastal ecosystems where soil disturbance and seasonal water logging may lead to elevation of Fe mobilization and associated water quality deterioration. Using wet-chemical extraction and laboratory cultivation, we examined the occurrence of Fe forms and associated bacterial populations in diverse soils of a representative subtropical Australian coastal catchment (Poona Creek). Total reactive Fe was abundant throughout 0e30 cm soil cores, consisting primarily of crystalline forms in well-drained sand soils and water-logged loam soils, whereas in water-logged, low clay soils, over half of total reactive Fe was present in poorly-crystalline forms due to organic and inorganic complexation, respectively. Forestry practices such as plantation clear-felling and replanting, seasonal water logging and mineral soil properties significantly impacted soil organic carbon (C), potentially-bioavailable Fe pools and densities of S-, but not Fe-, bacterial populations. Bacterial Fe(III) reduction and abiotic Fe(II) oxidation, as well as chemolithotrophic S oxidation and aerobic, heterotrophic respiration were integral to catchment terrestrial FeeC cycling. This work demonstrates bacterial involvement in terrestrial Fe cycling in a subtropical coastal circumneutral-pH ecosystem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Soluble organic matter derived from exotic Pinus vegetation forms stronger complexes with iron (Fe) than the soluble organic matter derived from most native Australian species. This has lead to concern about the environmental impacts related to the establishment of extensive exotic Pinus plantations in coastal southeast Queensland, Australia. It has been suggested that the Pinus plantations may enhance the solubility of Fe in soils by increasing the amount of organically complexed Fe. While this remains inconclusive, the environmental impacts of an increased flux of dissolved, organically complexed Fe from soils to the fluvial system and then to sensitive coastal ecosystems are potentially damaging. Previous work investigated a small number of samples, was largely laboratory based and had limited application to field conditions. These assessments lacked field-based studies, including the comparison of the soil water chemistry of sites associated with Pinus vegetation and undisturbed native vegetation. In addition, the main controls on the distribution and mobilisation of Fe in soils of this subtropical coastal region have not been determined. This information is required in order to better understand the relative significance of any Pinus enhanced solubility of Fe. The main aim of this thesis is to determine the controls on Fe distribution and mobilisation in soils and soil waters of a representative coastal catchment in southeast Queensland (Poona Creek catchment, Fraser Coast) and to test the effect of Pinus vegetation on the solubility and speciation of Fe. The thesis is structured around three individual papers. The first paper identifies the main processes responsible for the distribution and mobilisation of labile Fe in the study area and takes a catchment scale approach. Physicochemical attributes of 120 soil samples distributed throughout the catchment are analysed, and a new multivariate data analysis approach (Kohonen’s self organising maps) is used to identify the conditions associated with high labile Fe. The second paper establishes whether Fe nodules play a major role as an iron source in the catchment, by determining the genetic mechanism responsible for their formation. The nodules are a major pool of Fe in much of the region and previous studies have implied that they may be involved in redox-controlled mobilisation and redistribution of Fe. This is achieved by combining a detailed study of a ferric soil profile (morphology, mineralogy and micromorphology) with the distribution of Fe nodules on a catchment scale. The third component of the thesis tests whether the concentration and speciation of Fe in soil solutions from Pinus plantations differs significantly from native vegetation soil solutions. Microlysimeters are employed to collect unaltered, in situ soil water samples. The redox speciation of Fe is determined spectrophotometrically and the interaction between Fe and dissolved organic matter (DOM) is modelled with the Stockholm Humic Model. The thesis provides a better understanding of the controls on the distribution, concentration and speciation of Fe in the soils and soil waters of southeast Queensland. Reductive dissolution is the main mechanism by which mobilisation of Fe occurs in the study area. Labile Fe concentrations are low overall, particularly in the sandy soils of the coastal plain. However, high labile Fe is common in seasonally waterlogged and clay-rich soils which are exposed to fluctuating redox conditions and in organic-rich soils adjacent to streams. Clay-rich soils are most common in the upper parts of the catchment. Fe nodules were shown to have a negligible role in the redistribution of dissolved iron in the catchment. They are formed by the erosion, colluvial transport and chemical weathering of iron-rich sandstones. The ferric horizons, in which nodules are commonly concentrated, subsequently form through differential biological mixing of the soil. Whereas dissolution/ reprecipitation of the Fe cements is an important component of nodule formation, mobilised Fe reprecipitates locally. Dissolved Fe in the soil waters is almost entirely in the ferrous form. Vegetation type does not affect the concentration and speciation of Fe in soil waters, although Pinus DOM has greater acidic functional group site densities than DOM from native vegetation. Iron concentrations are highest in the high DOM soil waters collected from sandy podosols, where they are controlled by redox potential. Iron concentrations are low in soil solutions from clay and iron oxide rich soils, in spite of similar redox potentials. This is related to stronger sorption to the reactive clay and iron oxide mineral surfaces in these soils, which reduces the amount of DOM available for microbial metabolisation and reductive dissolution of Fe. Modelling suggests that Pinus DOM can significantly increase the amount of truly dissolved ferric iron remaining in solution in oxidising conditions. Thus, inputs of ferrous iron together with Pinus DOM to surface waters may reduce precipitation of hydrous ferric oxides and increase the flux of dissolved iron out of the catchment. Such inputs are most likely from the lower catchment, where podosols planted with Pinus are most widely distributed. Significant outcomes other than the main aims were also achieved. It is shown that mobilisation of Fe in podosols can occur as dissolved Fe(II) rather than as Fe(III)-organic complexes. This has implications for the large body of work which assumes that Fe(II) plays a minor role. Also, the first paper demonstrates that a data analysis approach based on Kohonen’s self organising maps can facilitate the interpretation of complex datasets and can help identify geochemical processes operating on a catchment scale.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Water resources are known to contain radioactive materials, either from natural or anthropogenic sources. Treatment, including wastewater treatment, of water for drinking, domestic, agricultural and industrial purposes has the potential to concentrate radioactive materials. Inevitably concentrated radioactive material is discharged to the environment as a waste product, reused for soil conditioning, or perhaps recycled as a new potable water supply. This thesis, presented as a collection of peer reviewed scientific papers, explores a number of water / wastewater treatment applications, and the subsequent nature and potential impact of radioactive residues associated with water exploitation processes. The thesis draws together research outcomes for sites predominantly throughout Queensland, Australia, where it is recognised that there is a paucity of published data on the subject. This thesis contributes to current knowledge on the monitoring, assessment and potential for radiation exposure from radioactive residues associated with the water industry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examined the potential for Fe mobilization and greenhouse gas (GHG, e.g. CO2, and CH4) evolution in SEQ soils associated with a range of plantation forestry practices and water-logged conditions. Intact, 30-cm-deep soil cores collected from representative sites were saturated and incubated for 35 days in the laboratory, with leachate and headspace gas samples periodically collected. Minimal Fe dissolution was observed in well-drained sand soils associated with mature, first-rotation Pinus and organic Fe complexation, whereas progressive Fe dissolution occurred over 14 days in clear-felled and replanted Pinus soils with low organic matter and non-crystalline Fe fractions. Both CO2 and CH4 effluxes were relatively lower in clear-felled and replanted soils compared with mature, first-rotation Pinus soils, despite the lack of statistically significant variations in total GHG effluxes associated with different forestry practices. Fe dissolution and GHG evolution in low-lying, water-logged soils adjacent to riparian and estuarine, native-vegetation buffer zones were impacted by mineral and physical soil properties. Highest levels of dissolved Fe and GHG effluxes resulted from saturation of riparian loam soils with high Fe and clay content, as well as abundant organic material and Fe-metabolizing bacteria. Results indicate Pinus forestry practices such as clear-felling and replanting may elevate Fe mobilization while decreasing CO2 and CH4 emissions from well-drained, SEQ plantation soils upon heavy flooding. Prolonged water-logging accelerates bacterially mediated Fe cycling in low-lying, clay-rich soils, leading to substantial Fe dissolution, organic matter mineralization, and CH4 production in riparian native-vegetation buffer zones.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The addition of lime into soils has been widely used to stabilize the expansive sub-grade soils when the road pavements are constructed on them. It is common practice to apply a half of the required lime amount and allow a certain time period for lime to react with soils (Amelioration period) before applying the rest of lime and compacting the sub-grade. The optimum amelioration period is essential to minimize the construction delay and to gain the higher strength. In this study, two different expansive soils procured from two different locations in the state of Queensland in Australia were first mixed with different lime contents. A soil mixed with a particular lime content was compacted at different amelioration periods (e.g.: 0, 6, 12, 18, 24 hrs) to obtain soil samples to measure the Unconfined Compressive Strength (UCS). The results suggested that for a given amelioration period, UCS increased with the increase in lime content. The optimum amelioration period could be within 14~17 hours for most of the lime contents in tested soils. This could suggest that the current 24-48 hour amelioration period specified by the Queensland Department of Transport and Main roads could be reduced.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deep Raman Spectroscopy is a domain within Raman spectroscopy consisting of techniques that facilitate the depth profiling of diffusely scattering media. Such variants include Time-Resolved Raman Spectroscopy (TRRS) and Spatially-Offset Raman Spectroscopy (SORS). A recent study has also demonstrated the integration of TRRS and SORS in the development of Time-Resolved Spatially-Offset Raman Spectroscopy (TR-SORS). This research demonstrates the application of specific deep Raman spectroscopic techniques to concealed samples commonly encountered in forensic and homeland security at various working distances. Additionally, the concepts behind these techniques are discussed at depth and prospective improvements to the individual techniques are investigated. Qualitative and quantitative analysis of samples based on spectral data acquired from SORS is performed with the aid of multivariate statistical techniques. By the end of this study, an objective comparison is made among the techniques within Deep Raman Spectroscopy based on their capabilities. The efficiency and quality of these techniques are determined based on the results procured which facilitates the understanding of the degree of selectivity for the deeper layer exhibited by the individual techniques relative to each other. TR-SORS was shown to exhibit an enhanced selectivity for the deeper layer relative to TRRS and SORS whilst providing spectral results with good signal-to-noise ratio. Conclusive results indicate that TR-SORS is a prospective deep Raman technique that offers higher selectivity towards deep layers and therefore enhances the non-invasive analysis of concealed substances from close range as well as standoff distances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The genesis of ferruginous nodules and pisoliths in soils and weathering profiles of coastal southern and eastern Australia has long been debated. It is not clear whether iron (Fe) nodules are redox accumulations, residues of Miocene laterite duricrust, or the products of contemporary weathering of Fe-rich sedimentary rocks. This study combines a catchment-wide survey of Fe nodule distribution in Poona Creek catchment (Fraser Coast, Queensland) with detailed investigations of a representative ferric soil profile to show that Fe nodules are derived from Fe-rich sandstones. Where these crop out, they are broken down, transported downslope by colluvial processes, and redeposited. Chemical and physical weathering transforms these eroded rock fragments into non-magnetic Fe nodules. Major features of this transformation include lower hematite/goethite and kaolinite/gibbsite ratios, increased porosity, etching of quartz grains, and development of rounded morphology and a smooth outer cortex. Iron nodules are commonly concentrated in ferric horizons. We show that these horizons form as the result of differential biological mixing of the soil. Bioturbation gradually buries nodules and rock fragments deposited at the surface of the soil, resulting in a largely nodule-free 'biomantle' over a ferric 'stone line'. Maghemite-rich magnetic nodules are a prominent feature of the upper half of the profile. These are most likely formed by the thermal alteration of non-magnetic nodules located at the top of the profile during severe bushfires. They are subsequently redistributed through the soil profile by bioturbation. Iron nodules occurring in the study area are products of contemporary weathering of Fe-rich rock units. They are not laterite duricrust residues nor are they redox accumulations, although redox-controlled dissolution/re-precipitation is an important component of post-depositional modification of these Fe nodules.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Unsaturated water flow in soil is commonly modelled using Richards’ equation, which requires the hydraulic properties of the soil (e.g., porosity, hydraulic conductivity, etc.) to be characterised. Naturally occurring soils, however, are heterogeneous in nature, that is, they are composed of a number of interwoven homogeneous soils each with their own set of hydraulic properties. When the length scale of these soil heterogeneities is small, numerical solution of Richards’ equation is computationally impractical due to the immense effort and refinement required to mesh the actual heterogeneous geometry. A classic way forward is to use a macroscopic model, where the heterogeneous medium is replaced with a fictitious homogeneous medium, which attempts to give the average flow behaviour at the macroscopic scale (i.e., at a scale much larger than the scale of the heterogeneities). Using the homogenisation theory, a macroscopic equation can be derived that takes the form of Richards’ equation with effective parameters. A disadvantage of the macroscopic approach, however, is that it fails in cases when the assumption of local equilibrium does not hold. This limitation has seen the introduction of two-scale models that include at each point in the macroscopic domain an additional flow equation at the scale of the heterogeneities (microscopic scale). This report outlines a well-known two-scale model and contributes to the literature a number of important advances in its numerical implementation. These include the use of an unstructured control volume finite element method and image-based meshing techniques, that allow for irregular micro-scale geometries to be treated, and the use of an exponential time integration scheme that permits both scales to be resolved simultaneously in a completely coupled manner. Numerical comparisons against a classical macroscopic model confirm that only the two-scale model correctly captures the important features of the flow for a range of parameter values.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One DDT-contaminated soil and two uncontaminated soils were used to enumerate DDT-resistant microbes (bacteria, actinomycetes and fungi) by using soil dilution agar plates in media either with 150 μg DDT ml -1 or without DDT at different temperatures (25, 37 and 55°C). Microbial populations in this study were significantly (p<0.001) affected by DDT in the growth medium. However, the numbers of microbes in long-term contaminated and uncontaminated soils were similar, presumably indicating that DDT-resistant microbes had developed over a long time exposure. The tolerance of isolated soil microbes to DDT varied in the order fungi>actinomycetes>bacteria. Bacteria from contaminated soil were more resistant to DDT than bacteria from uncontaminated soils. Microbes isolated at different temperatures also demonstrated varying degrees of DDT resistance. For example, bacteria and actinomycetes isolated at all incubation temperatures were sensitive to DDT. Conversely fungi isolated at all temperatures were unaffected by DDT.