982 resultados para Soild Lead content
Resumo:
In this paper, we report an enhancement in ionic conductivity in a new nano-composite solid polymer electrolyte namely, (PEG) (x) LiBr: y(SiO2). The samples were prepared, characterized, and investigated by XRD, IR, NMR, and impedance spectroscopy. Conductivity as a function of salt concentration shows a double peak. Five weight percent addition of silica nanoparticles increases the ionic conductivity by two orders of magnitude. Conductivity exhibits an Arrhenius type dependence on temperature. IR study has shown that the existence of nanoparticles in the vicinity of terminal OaEuro center dot H group results in a shift in IR absorption frequency and increase in amplitude of vibration of the terminal OaEuro center dot H group. This might lead to an enhancement in conductivity due to increased segmental motion of the polymer. Li-7 NMR spectroscopic studies also seem to support this. Thus addition of nanoparticle inert fillers still seems to be a promising technique to enhance the ionic conductivity in solid polymer electrolytes.
Resumo:
Failure to repair DNA double-strand breaks (DSBs) can lead to cell death or cancer. Although nonhomologous end joining (NHEJ) has been studied extensively in mammals, little is known about it in primary tissues. Using oligomeric DNA mimicking endogenous DSBs, NHEJ in cell-free extracts of rat tissues were studied. Results show that efficiency of NHEJ is highest in lungs compared to other somatic tissues. DSBs with compatible and blunt ends joined without modifications, while noncompatible ends joined with minimal alterations in lungs and testes. Thymus exhibited elevated joining, followed by brain and spleen, which could be correlated with NHEJ gene expression. However, NHEJ efficiency was poor in terminally differentiated organs like heart, kidney and liver. Strikingly, NHEJ junctions from these tissues also showed extensive deletions and insertions. Hence, for the first time, we show that despite mode of joining being generally comparable, efficiency of NHEJ varies among primary tissues of mammals.
Resumo:
Gold(I)-based drugs have been used successfully for the treatment of rheumatoid arthritis (RA) for several years. Although the exact mechanism of action of these gold(I) drugs for RA has not been clearly established, the interaction of these compounds with mammalian enzymes has been extensively studied. In this paper, we describe the interaction of therapeutic gold(I) compounds with mammalian proteins that contain cysteine (Cys) and selenocysteine (Sec) residues. Owing to the higher affinity of gold(I) towards sulfur and selenium, gold(I) drugs rapidly react with the activated cysteine or selenocysteine residues of the enzymes to form protein-gold(I)-thiolate or protein-gold(I)-selenolate complexes. The formation of stable gold(I)-thiolate/selenolate complexes generally lead to inhibition of the enzyme activity. The gold-thiolate/selenolate complexes undergo extensive ligand exchange reactions with other nucleophiles and such ligand exchange reactions alter the inhibitory effects of gold(I) complexes. Therefore, the effect of gold(I) compounds on the enzymatic activity of cysteine-or selenocysteine-containing proteins may play important roles in RA. The interaction of gold(I) compounds with different enzymes and the biochemical mechanism underlying the inhibition of enzymatic activities may have broad medicinal implications for the treatment of RA.
Resumo:
We present a framework for performance evaluation of manufacturing systems subject to failure and repair. In particular, we determine the mean and variance of accumulated production over a specified time frame and show the usefulness of these results in system design and in evaluating operational policies for manufacturing systems. We extend this analysis for lead time as well. A detailed performability study is carried out for the generic model of a manufacturing system with centralized material handling. Several numerical results are presented, and the relevance of performability analysis in resolving system design issues is highlighted. Specific problems addressed include computing the distribution of total production over a shift period, determining the shift length necessary to deliver a given production target with a desired probability, and obtaining the distribution of Manufacturing Lead Time, all in the face of potential subsystem failures.
Resumo:
Ultrasound has been widely used by chemists to enhance yields as well as rates of homogeneous as well as heterogeneous chemical reactions. The effect of ultrasound on the course of chemical reactions is mediated through cavitation bubbles it generates. High temperatures and pressures are attained inside the cavitating bubbles when they collapse. The extreme conditions so generated lead to the formation of reactive intermediates, e.g., free radiacls, inside the bubbles, which cause chemical reactions to occur when they enter the surrounding liquid. This is the mechanism through which ultrasound influences the path of homogeneous reactions. The cavitation bubbles collapse asymmetrically in the vicinity of solids, e.g., catalyst particles. Asymmetric collapse lead to formation of high speed microjets. The microjets can enhance transport rates, the increase surface area through pitting as well as particle fragmentation through collisions. Both can alter the rates of heterogeneous reaction rates. It however appears that these effects do not exhaust the scope of the influence of ultrasound on heterogeneous reactions. Modelling and quantitative prediction of the effect of ultrasound on chemical reactions is however at a stage of infancy as the phenomena are complex. Only a few examples of modelling exist in literature. Apart from this, reactor design and scaleup pose significant problems. Thus sonochemical reaction engineering offers large scope for research and development efforts.
Resumo:
The solid state photochemical behaviour of 7-hydroxy-4-styrylcoumarin 1 and several of its derivatives and analogues has been investigated. All the compounds with the exception of 7-methoxy-4-styrylcoumarin 2 are photolabile and yield anti-HT dimers. It has been observed that chloro substitution in the systems studied does not lead to the expected beta-packing mode. The photobehaviour of 1 and 2 has been correlated with their crystal structures. Reasons for alpha-packing have been examined. The systematics in the arrangement of the carbonyl group and phenyl group of the close neighbours in the crystals of 1, 2 and a few other cases are presented.
Resumo:
We have prepared stable colloidal suspensions in a lyotropic liquid crystal exhibiting an isotropic-nematic-lamellar phase sequence. Small angle neutron scattering (SANS) and dynamic light scattering (DLS) studies show the existence of attractive interparticle interactions in the nematic phase, which lead to a gas-liquid transition of the particles. The resulting liquid phase is weakly anisotropic. Further, the nematic-lamellar transition of the liquid crystal is found to be accompanied by a liquid-solid transition of the particles.
Resumo:
Application of differential geometry to study the dynamics of electrical machines by Gabriel Kron evoked only theoretical interest among the power system engineers and was considered hardly suitable for any practical use. Extension of Kron's work led to a physical understanding of the processes governing the small oscillation instability in power system. This in turn has made it possible to design a self-tuning Power System Stabilizer to contain the oscillatory instability over arm extended range of system and operating conditions. This paper briefly recounts the history of this development and touches upon the essential design features of the stabilizer. It presents some results from simulation studies, laboratory experiments and recently conducted field trials at actual plants-all of which help to establish the efficacy of the proposed stabilizer and corroborate the theoretical findings.
Resumo:
This paper deals with an experimental study on flexural bond strength of masonry using various blocks in combination with different mortars. Flexural bond strength of masonry has been determined by testing stack-bonded prisms using a modified bond wrench test set-up. The effect of mortar composition and strength on the masonry's. flexural bond strength using three types of masonry units (stabilized mud blocks, stabilized soil-sand blocks and burnt brick) has been examined. The effect of the masonry unit's moisture content on flexural bond strength has also been studied. Increases in mortar strength lead to increased flexural bond strength for cement mortar, irrespective of the type of masonry unit. It has been found that combination mortars, such as soil-cement mortar and cement-lime mortar, lead to better bond strength compared to cement mortars. The moisture content of the masonry unit at the time of casting has displayed significant influence on the flexural bond strength of the masonry. It has been found that for each type of masonry unit, an optimum moisture content exists, beyond which the flexural bond strength falls off quickly.
Resumo:
Studies on the low-humidity (88%) forms of tetragonal and monoclinic lysozyme, resulting from water-mediated transformations, have provided a wealth of information on the variability in protein hydration, its structural consequences and the water structure associated with proteins, in addition to facilitating the delineation of the rigid and the flexible regions in the protein molecule and the invariant features in its hydration shell. Surprisingly, monoclinic lysozyme continues to diffract even when the environmental humidity is drastically reduced, thus permitting the structural study of the enzyme at different levels of hydration. As part of a study in this direction, three very low humidity forms, two of them occuring at a nominal relative humidity of 38% and the other at 5% relative humidity, have been characterized. These have unprecedented low solvent contents of 16.9, 17.6 and 9.4%, respectively, as determined by the Matthews method.
Resumo:
Clay liners have been widely used to contain toxic and hazardous waste materials. Clays absorb contaminant cations due to their exchange capacity. To improve the performance of the clay liner, fly ash, a waste material arising from the combustion of coal has been studied as a pre-filter material. In particular, the retention of lead by two different fly ashes was studied. The influence of pH on retention as well as leaching characteristics are also examined. The results obtained from the retention experiments by the permeameter method indicate that fly ash retains the lead ions through precipitation in the pores as well as onto the surface when the ambient pH value is more than 5.5, and through adsorption when the pH value is less than 5.5. It has been observed that fly ash did not release the retained lead ions when the pH value is between 3.5 and 10.0. Hence, the retention of lead ions by fly ash is likely to be permanent since the pH of most of the municipal landfill leachates are within 3.7 to 8.8. However, for highly acidic or alkaline leachates, the retained ions can get released.
Resumo:
Competition between seeds within a fruit for parental resources is described using one-locus-two-allele models. While a �normal� allele leads to an equitable distribution of resources between seeds (a situation which also corresponds to the parental optimum), the �selfish� allele is assumed to cause the seed carrying it to usurp a higher proportion of the resources. The outcome of competition between �selfish� alleles is also assumed to lead to an asymmetric distribution of resources, the �winner� being chosen randomly. Conditions for the spread of an initially rare selfish allele and the optimal resource allocation corresponding to the evolutionarily stable strategy, derived for species with n-seeded fruits, are in accordance with expectations based on Hamilton�s inclusive fitness criteria. Competition between seeds is seen to be most intense when there are only two seeds, and decreases with increasing number of seeds, suggesting that two-seeded fruits would be rarer than one-seeded or many-seeded ones. Available data from a large number of plant species are consistent with this prediction of the model.
Resumo:
Cyclin dependent kinase 5 regulatory subunit-associated protein 2 (CDK5RAP2) has gained attention in the last years following the discovery, in 2005, that recessive mutations cause primary autosomal recessive microcephaly. This disease is seen as an isolated developmental defect of the brain, particularly of the cerebral cortex, and was thus historically also referred to as microcephalia vera. Unraveling the pathomechanisms leading to this human disease is fascinating scientists because it can convey insight into basic mechanisms of physiologic brain development (particularly of cortex formation). It also finds itself in the spotlight because of its implication in trends in mammalian evolution with a massive increase in the size of the cerebral cortex in primates. Here, we provide a timely overview of the current knowledge on the function of CDK5RAP2 and mechanisms that might lead to disease in humans when the function of this protein is disturbed.
Resumo:
Abundant quantities of fly ash have been produced by thermal power plants situated ail over the world. Many applications of fly ash depend upon its pozzolanic reactivity. This reactivity depends upon many factors, including lime content. Many fly ashes show marked improvement with the addition of lime. However, for every fly ash, there is an optimum lime content for its maximum reactivity. There is no well-established simple test to determine the optimum lime content. In this paper an attempt is made to use a simple physical and physico chemical test to determine the optimum lime content. The principle behind the use of a pH test, liquid limit test, and free swell index test to determine the optimum lime content has been explained. All the methods predict nearly the same optimum lime content and correlate well with that determined by the strength test.
Resumo:
Dipolar systems, both liquids and solids, constitute a class of naturally abundant systems that are important in all branches of natural science. The study of orientational relaxation provides a powerful method to understand the microscopic properties of these systems and, fortunately, there are many experimental tools to study orientational relaxation in the condensed phases. However, even after many years of intense research, our understanding of orientational relaxation in dipolar systems has remained largely imperfect. A major hurdle towards achieving a comprehensive understanding is the long range and complex nature of dipolar interactions which also made reliable theoretical study extremely difficult. These difficulties have led to the development of continuum model based theories, which although they provide simple, elegant expressions for quantities of interest, are mostly unsatisfactory as they totally neglect the molecularity of inter-molecular interactions. The situation has improved in recent years because of renewed studies, led by computer simulations. In this review, we shall address some of the recent advances, with emphasis on the work done in our laboratory at Bangalore. The reasons for the failure of the continuum model, as revealed by the recent Brownian dynamics simulations of the dipolar lattice, are discussed. The main reason is that the continuum model predicts too fast a decay of the torque-torque correlation function. On the other hand, a perturbative calculation, based on Zwanzig's projection operator technique, provides a fairly satisfactory description of the single particle orientational dynamics for not too strongly polar dipolar systems. A recently developed molecular hydrodynamic theory that properly includes the effects of intermolecular orientational pair correlations provides an even better description of the single-particle orientational dynamics. We also discuss the rank dependence of the dielectric friction. The other topics reviewed here includes dielectric relaxation and solvation dynamics, as they are intimately connected with orientational relaxation. Recent molecular dynamics simulations of the dipolar lattice are also discussed. The main theme of the present review is to understand the effects of intermolecular interactions on orientational relaxation. The presence of strong orientational pair correlation leads to a strong coupling between the single particle and the collective dynamics. This coupling can lead to rich dynamical properties, some of which are detailed here, while a major part remains yet unexplored.