976 resultados para Soil moisture content


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The focus of this paper is given to investigate the effect of different fibers on the pore pressure of fiber reinforced self-consolidating concrete under fire. The investigation on the pore pressure-time and temperature relationships at different depths of fiber reinforced self-consolidating concrete beams was carried out. The results indicated that micro PP fiber is more effective in mitigating the pore pressure than macro PP fiber and steel fiber. The composed use of steel fiber, micro PP fiber and macro PP fiber showed clear positive hybrid effect on the pore pressure reduction near the beam bottom subjected to fire. Compared to the effect of macro PP fiber with high dosages, the effect of micro PP fiber with low fiber contents on the pore pressure reduction is much stronger. The significant factor for reduction of pore pressure depends mainly on the number of PP fibers and not only on the fiber content. An empirical formula was proposed to predict the relative maximum pore pressure of fiber reinforced self-consolidating concrete exposed to fire by considering the moisture content, compressive strength and various fibers. The suggested model corresponds well with the experimental results of other research and tends to prove that the micro PP fiber can be the vital component for reduction in pore pressure, temperature as well spalling of concrete.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Projecte de recerca elaborat a partir d’una estada a la National Oceanography Centre of Southampton (NOCS), Gran Bretanya, entre maig i juliol del 2006. La possibilitat d’obtenir una estimació precissa de la salinitat marina (SSS) és important per a investigar i predir l’extensió del fenòmen del canvi climàtic. La missió Soil Moisture and Ocean Salinity (SMOS) va ser seleccionada per l’Agència Espacial Europea (ESA) per a obtenir mapes de salinitat de la superfície marina a escala global i amb un temps de revisita petit. Abans del llençament de SMOS es preveu l’anàlisi de la variabilitat horitzontal de la SSS i del potencial de les dades recuperades a partir de mesures de SMOS per a reproduir comportaments oceanogràfics coneguts. L’objectiu de tot plegat és emplenar el buit existent entre les fonts de dades d’entrada/auxiliars fiables i les eines desenvolupades per a simular i processar les dades adquirides segons la configuració de SMOS. El SMOS End-to-end Performance Simulator (SEPS) és un simulador adhoc desenvolupat per la Universitat Politècnica de Catalunya (UPC) per a generar dades segons la configuració de SMOS. Es va utilitzar dades d’entrada a SEPS procedents del projecte Ocean Circulation and Climate Advanced Modeling (OCCAM), utilitzat al NOCS, a diferents resolucions espacials. Modificant SEPS per a poder fer servir com a entrada les dades OCCAM es van obtenir dades de temperatura de brillantor simulades durant un mes amb diferents observacions ascendents que cobrien la zona seleccionada. Les tasques realitzades durant l’estada a NOCS tenien la finalitat de proporcionar una tècnica fiable per a realitzar la calibració externa i per tant cancel•lar el bias, una metodologia per a promitjar temporalment les diferents adquisicions durant les observacions ascendents, i determinar la millor configuració de la funció de cost abans d’explotar i investigar les posibiltats de les dades SEPS/OCCAM per a derivar la SSS recuperada amb patrons d’alta resolució.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Projecte de recerca elaborat a partir d’una estada al University of Bristol, Gran Bretanya, durant agost i setembre del 2007. Els objectius del projecte d’estudi del jaciment de Lady Field (Woolston Manor Farm, Somerset, Gran Bretanya) eren, bàsicament, tres: en primer lloc, posar en pràctica els coneixements teòrics assolits durant la formació en prospecció geofísica; en segon lloc, aportar informació complementària a la aportada per la prospecció tradicional i el sondeig amb gradiòmetre magnètic efectuades prèviament per l’equip investigador del centre, arribant a definir millor les estructures poc definides per l’altre sistema i, finalment, obtenir un cas d’estudi sobre un jaciment medieval a Gran Bretanya, on les condicions geològiques i climàtiques, que afecten els resultats de la prospecció, són diferents a les del nostre país. Aquests objectius s’han assolit, ja que s’ha pogut portar a terme una prospecció de camp amb el sistema de georadar, processar les dades i obtenir-ne dades de qualitat i obtenir informació útil i rellevant de cara a la definició de les restes detectades, una vegada feta la interpretació. Els resultats mostren l’aparició en el subsòl del jaciment de quatre possibles fases d’ocupació, entre les que destaquen un moment amb possibles restes d’una antiga xarxa urbana, treballs agrícoles o un sistema de drenatge del terreny. Finalment l’estudi ha pogut constatar que la prospecció amb GPR en aquestes condicions geològiques és possible, tot i que les climàtiques –essencialment la pluja i la humitat del sòl- suposen complicacions a l’hora d’adquirir dades de forma segura per la maquinària i per la qualitat de les dades.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the ornamental plant production region of Girona (Spain), which is one of the largest of its kind in southern Europe, most of the surface is irrigated using wide blocked-end furrows. The objectives of this paper were: (1) to evaluate the irrigation scheduling methods used by ornamental plant producers; (2) to analyse different scenarios inorder to assess how they affect irrigation performance; (3) to evaluate the risk of deep percolation; and (4) to calculategross water productivity. A two-year study in a representative commercial field, planted with Prunus cerasifera ‘Nigra’, was carried out. The irrigation dose applied by the farmers was slightly smaller than the required water dose estimated by the use of two different methods: the first based on soil water content, and the second based on evapotranspiration. Distribution uniformity and application efficiency were high, with mean values above 87%. Soil water contentmeasurements revealed that even at the end of the furrow, where the infiltrated water depth was greatest, more than 90% of the infiltrated water was retained in the shallowest 40 cm of the soil; accordingly, the risk of water loss due to deep percolation was minimal. Gross water productivity for ornamental tree production was € 11.70 m–3, approximately 20 times higher than that obtained with maize in the same region

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ground-penetrating radar (GPR) has the potential to provide valuable information on hydrological properties of the vadose zone because of their strong sensitivity to soil water content. In particular, recent evidence has suggested that the stochastic inversion of crosshole GPR data within a coupled geophysical-hydrological framework may allow for effective estimation of subsurface van-Genuchten-Mualem (VGM) parameters and their corresponding uncertainties. An important and still unresolved issue, however, is how to best integrate GPR data into a stochastic inversion in order to estimate the VGM parameters and their uncertainties, thus improving hydrological predictions. Recognizing the importance of this issue, the aim of the research presented in this thesis was to first introduce a fully Bayesian inversion called Markov-chain-Monte-carlo (MCMC) strategy to perform the stochastic inversion of steady-state GPR data to estimate the VGM parameters and their uncertainties. Within this study, the choice of the prior parameter probability distributions from which potential model configurations are drawn and tested against observed data was also investigated. Analysis of both synthetic and field data collected at the Eggborough (UK) site indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when these data are combined with a realistic, informative prior. A subsequent study explore in detail the dynamic infiltration case, specifically to what extent time-lapse ZOP GPR data, collected during a forced infiltration experiment at the Arrenaes field site (Denmark), can help to quantify VGM parameters and their uncertainties using the MCMC inversion strategy. The findings indicate that the stochastic inversion of time-lapse GPR data does indeed allow for a substantial refinement in the inferred posterior VGM parameter distributions. In turn, this significantly improves knowledge of the hydraulic properties, which are required to predict hydraulic behaviour. Finally, another aspect that needed to be addressed involved the comparison of time-lapse GPR data collected under different infiltration conditions (i.e., natural loading and forced infiltration conditions) to estimate the VGM parameters using the MCMC inversion strategy. The results show that for the synthetic example, considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions. When investigating data collected at the Arrenaes field site, further complications arised due to model error and showed the importance of also including a rigorous analysis of the propagation of model error with time and depth when considering time-lapse data. Although the efforts in this thesis were focused on GPR data, the corresponding findings are likely to have general applicability to other types of geophysical data and field environments. Moreover, the obtained results allow to have confidence for future developments in integration of geophysical data with stochastic inversions to improve the characterization of the unsaturated zone but also reveal important issues linked with stochastic inversions, namely model errors, that should definitely be addressed in future research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Appropriate curing is important for concrete to obtain the designed properties. This research was conducted to evaluate the curing effects of different curing materials and methods on pavement properties. At present the sprayed curing compound is a common used method for pavement and other concrete structure construction. Three curing compounds were selected for testing. Two different application rates were employed for the white-pigmented liquid curing compounds. The concrete properties of temperature, moisture content, conductivity, and permeability were examined at several test locations. It was found, in this project, that the concrete properties varied with the depth. Of the tests conducted (maturity, sorptivity, permeability, and conductivity), conductivity appears to be the best method to evaluate the curing effects in the field and bears potential for field application. The results indicated that currently approved curing materials in Iowa, when spread uniformly in a single or double application, provide adequate curing protection and meet the goals of the Iowa Department of Transportation. Experimental curing methods can be compared to this method through the use of conductivity testing to determine their application in the field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Concrete curing is closely related to cement hydration, microstructure development, and concrete performance. Application of a liquid membrane-forming curing compound is among the most widely used curing methods for concrete pavements and bridge decks. Curing compounds are economical, easy to apply, and maintenance free. However, limited research has been done to investigate the effectiveness of different curing compounds and their application technologies. No reliable standard testing method is available to evaluate the effectiveness of curing, especially of the field concrete curing. The present research investigates the effects of curing compound materials and application technologies on concrete properties, especially on the properties of surface concrete. This report presents a literature review of curing technology, with an emphasis on curing compounds, and the experimental results from the first part of this research—lab investigation. In the lab investigation, three curing compounds were selected and applied to mortar specimens at three different times after casting. Two application methods, single- and double-layer applications, were employed. Moisture content, conductivity, sorptivity, and degree of hydration were measured at different depths of the specimens. Flexural and compressive strength of the specimens were also tested. Statistical analysis was conducted to examine the relationships between these material properties. The research results indicate that application of a curing compound significantly increased moisture content and degree of cement hydration and reduced sorptivity of the near-surface-area concrete. For given concrete materials and mix proportions, optimal application time of curing compounds depended primarily upon the weather condition. If a sufficient amount of a high-efficiency-index curing compound was uniformly applied, no double-layer application was necessary. Among all test methods applied, the sorptivity test is the most sensitive one to provide good indication for the subtle changes in microstructure of the near-surface-area concrete caused by different curing materials and application methods. Sorptivity measurement has a close relation with moisture content and degree of hydration. The research results have established a baseline for and provided insight into the further development of testing procedures for evaluation of curing compounds in field. Recommendations are provided for further field study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This experiment was carried out in order to evaluate the effect of Sitophilus zeamais on physical, physiological and sanitary quality of stored corn. Samples of 500 g of the hybrid OC-705, in three replicates, were conditioned in glasses covered with a screened lid, and kept in chamber at 25±2ºC, 70±5% RH and 12 h of photophase, for 150 days. The infestation levels were 0, 5, 15 and 50 adults/replicate, for the storage periods of 30, 60, 90, 120 and 150 days. The moisture content, classification, weight loss, germination and internal infestation were evaluated monthly. Significant inverse correlations were verified between the number of insects and both the germination and the weight loss; also between the internal infestation and the germination and the standard type. The presence of S. zeamais showed a positive correlation with the weight loss, what means that the internal and external infestations contribute to the reduction of physiological and physical quality of corn seeds. The mean dry matter loss was 0,36%/day, corresponding to a consumption of 0,0001%/insect/month. As the result of those damages, the product suffered reduction of the commercial grade in 30 days, with significant loss in all quality factors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time-lapse geophysical monitoring and inversion are valuable tools in hydrogeology for monitoring changes in the subsurface due to natural and forced (tracer) dynamics. However, the resulting models may suffer from insufficient resolution, which leads to underestimated variability and poor mass recovery. Structural joint inversion using cross-gradient constraints can provide higher-resolution models compared with individual inversions and we present the first application to time-lapse data. The results from a synthetic and field vadose zone water tracer injection experiment show that joint 3-D time-lapse inversion of crosshole electrical resistance tomography (ERT) and ground penetrating radar (GPR) traveltime data significantly improve the imaged characteristics of the point injected plume, such as lateral spreading and center of mass, as well as the overall consistency between models. The joint inversion method appears to work well for cases when one hydrological state variable (in this case moisture content) controls the time-lapse response of both geophysical methods. Citation: Doetsch, J., N. Linde, and A. Binley (2010), Structural joint inversion of time-lapse crosshole ERT and GPR traveltime data, Geophys. Res. Lett., 37, L24404, doi: 10.1029/2010GL045482.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, we investigated the feasibility of using the C-band European Remote Sensing Satellite (ERS-1) synthetic aperture radar (SAR) data to estimate surface soil roughness in a semiarid rangeland. Radar backscattering coefficients were extracted from a dry and a wet season SAR image and were compared with 47 in situ soil roughness measurements obtained in the rocky soils of the Walnut Gulch Experimental Watershed, southeastern Arizona, USA. Both the dry and the wet season SAR data showed exponential relationships with root mean square (RMS) height measurements. The dry C-band ERS-1 SAR data were strongly correlated (R² = 0.80), while the wet season SAR data have somewhat higher secondary variation (R² = 0.59). This lower correlation was probably provoked by the stronger influence of soil moisture, which may not be negligible in the wet season SAR data. We concluded that the single configuration C-band SAR data is useful to estimate surface roughness of rocky soils in a semiarid rangeland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The European Space Agency Soil Moisture andOcean Salinity (SMOS) mission aims at obtaining global maps ofsoil moisture and sea surface salinity from space for large-scale andclimatic studies. It uses an L-band (1400–1427 MHz) MicrowaveInterferometric Radiometer by Aperture Synthesis to measurebrightness temperature of the earth’s surface at horizontal andvertical polarizations ( h and v). These two parameters will beused together to retrieve the geophysical parameters. The retrievalof salinity is a complex process that requires the knowledge ofother environmental information and an accurate processing ofthe radiometer measurements. Here, we present recent resultsobtained from several studies and field experiments that were partof the SMOS mission, and highlight the issues still to be solved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impact of topography and mixed pixels on L-band radiometric observations over land needs to be quantified to improve the accuracy of soil moisture retrievals. For this purpose, a series of simulations has been performed with an improved version of the soil moisture and ocean salinity (SMOS) end-to-end performance simulator (SEPS). The brightness temperature generator of SEPS has been modified to include a 100-m-resolution land cover map and a 30-m-resolution digital elevation map of Catalonia (northeast of Spain). This high-resolution generator allows the assessment of the errors in soil moisture retrieval algorithms due to limited spatial resolution and provides a basis for the development of pixel disaggregation techniques. Variation of the local incidence angle, shadowing, and atmospheric effects (up- and downwelling radiation) due to surface topography has been analyzed. Results are compared to brightness temperatures that are computed under the assumption of an ellipsoidal Earth.