814 resultados para Sleep homeostasis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The validation of rodent models for restless legs syndrome (Willis-Ekbom disease) and periodic limb movements during sleep requires knowledge of physiological limb motor activity during sleep in rodents. This study aimed to determine the physiological time structure of tibialis anterior activity during sleep in mice and rats, and compare it with that of healthy humans. Wild-type mice (n = 9) and rats (n = 8) were instrumented with electrodes for recording the electroencephalogram and electromyogram of neck muscles and both tibialis anterior muscles. Healthy human subjects (31 ± 1 years, n = 21) underwent overnight polysomnography. An algorithm for automatic scoring of tibialis anterior electromyogram events of mice and rats during non-rapid eye movement sleep was developed and validated. Visual scoring assisted by this algorithm had inter-rater sensitivity of 92-95% and false-positive rates of 13-19% in mice and rats. The distribution of the time intervals between consecutive tibialis anterior electromyogram events during non-rapid eye movement sleep had a single peak extending up to 10 s in mice, rats and human subjects. The tibialis anterior electromyogram events separated by intervals <10 s mainly occurred in series of two-three events, their occurrence rate in humans being lower than in mice and similar to that in rats. In conclusion, this study proposes reliable rules for scoring tibialis anterior electromyogram events during non-rapid eye movement sleep in mice and rats, demonstrating that their physiological time structure is similar to that of healthy young human subjects. These results strengthen the basis for translational rodent models of periodic limb movements during sleep and restless legs syndrome/Willis-Ekbom disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY OBJECTIVES Sleep deprivation (SDp) performed before stroke induces an ischemic tolerance state as observed in other forms of preconditioning. As the mechanisms underlying this effect are not well understood, we used DNA oligonucleotide microarray analysis to identify the genes and the gene-pathways underlying SDp preconditioning effects. DESIGN Gene expression was analyzed 3 days after stroke in 4 experimental groups: (i) SDp performed before focal cerebral ischemia (IS) induction; (ii) SDp performed before sham surgery; (iii) IS without SDp; and (iv) sham surgery without SDp. SDp was performed by gentle handling during the last 6 h of the light period, and ischemia was induced immediately after. SETTINGS Basic sleep research laboratory. MEASUREMENTS AND RESULTS Stroke induced a massive alteration in gene expression both in sleep deprived and non-sleep deprived animals. However, compared to animals that underwent ischemia alone, SDp induced a general reduction in transcriptional changes with a reduction in the upregulation of genes involved in cell cycle regulation and immune response. Moreover, an upregulation of a new neuroendocrine pathway which included melanin concentrating hormone, glycoprotein hormones-α-polypeptide and hypocretin was observed exclusively in rats sleep deprived before stroke. CONCLUSION Our data indicate that sleep deprivation before stroke reprogrammed the signaling response to injury. The inhibition of cell cycle regulation and inflammation are neuroprotective mechanisms reported also for other forms of preconditioning treatment, whereas the implication of the neuroendocrine function is novel and has never been described before. These results therefore provide new insights into neuroprotective mechanisms involved in ischemic tolerance mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the mammalian gastrointestinal tract the close vicinity of abundant immune effector cells and trillions of commensal microbes requires sophisticated barrier and regulatory mechanisms to maintain vital host-microbial interactions and tissue homeostasis. During co-evolution of the host and its intestinal microbiota a protective multilayered barrier system was established to segregate the luminal microbes from the intestinal mucosa with its potent immune effector cells, limit bacterial translocation into host tissues to prevent tissue damage, while ensuring the vital functions of the intestinal mucosa and the luminal gut microbiota. In the present review we will focus on the different layers of protection in the intestinal tract that allow the successful mutualism between the microbiota and the potent effector cells of the intestinal innate and adaptive immune system. In particular, we will review some of the recent findings on the vital functions of the mucus layer and its site-specific adaptations to the changing quantities and complexities of the microbiota along the (gastro-) intestinal tract. Understanding the regulatory pathways that control the establishment of the mucus layer, but also its degradation during intestinal inflammation may be critical for designing novel strategies aimed at maintaining local tissue homeostasis and supporting remission from relapsing intestinal inflammation in patients with inflammatory bowel diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Cardiac myocytes utilize three high-capacity Na transport processes whose precise function can determine myocyte fate and the triggering of arrhythmias in pathological settings. We present recent results on the regulation of all three transporters that may be important for an understanding of cardiac function during ischemia/reperfusion episodes. METHODS AND RESULTS Refined ion selective electrode (ISE) techniques and giant patch methods were used to analyze the function of cardiac Na/K pumps, Na/Ca exchange (NCX1), and Na/H exchange (NHE1) in excised cardiac patches and intact myocytes. To consider results cohesively, simulations were developed that account for electroneutrality of the cytoplasm, ion homeostasis, water homeostasis (i.e., cell volume), and cytoplasmic pH. The Na/K pump determines the average life-time of Na ions (3-10 minutes) as well as K ions (>30 minutes) in the cytoplasm. The long time course of K homeostasis can determine the time course of myocyte volume changes after ion homeostasis is perturbed. In excised patches, cardiac Na/K pumps turn on slowly (-30 seconds) with millimolar ATP dependence, when activated for the first time. In steady state, however, pumps are fully active with <0.2 mM ATP and are nearly unaffected by high ADP (2 mM) and Pi (10 mM) concentrations as may occur in ischemia. NCX1s appear to operate with slippage that contributes to background Na influx and inward current in heart. Thus, myocyte Na levels may be regulated by the inactivation reactions of the exchanger which are both Na- and proton-dependent. NHE1 also undergo strong Na-dependent inactivation, whereby a brief rise of cytoplasmic Na can cause inactivation that persists for many minutes after cytoplasmic Na is removed. This mechanism is blocked by pertussis toxin, suggesting involvement of a Na-dependent G-protein. Given that maximal NCX1- and NHE1-mediated ion fluxes are much greater than maximal Na/K pump-mediated Na extrusion in myocytes, the Na-dependent inactivation mechanisms of NCX1 and NHE1 may be important determinants of cardiac Na homeostasis. CONCLUSIONS Na/K pumps appear to be optimized to continue operation when energy reserves are compromised. Both NCX1 and NHE1 activities are regulated by accumulation of cytoplasmic Na. These principles may importantly control cardiac cytoplasmic Na and promote myocyte survival during ischemia/reperfusion episodes by preventing Ca overload.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sleep electroencephalogram (EEG) spectrum is unique to an individual and stable across multiple baseline recordings. The aim of this study was to examine whether the sleep EEG spectrum exhibits the same stable characteristics after acute total sleep deprivation. Polysomnography (PSG) was recorded in 20 healthy adults across consecutive sleep periods. Three nights of baseline sleep [12 h time in bed (TIB)] following 12 h of wakefulness were interleaved with three nights of recovery sleep (12 h TIB) following 36 h of sustained wakefulness. Spectral analysis of the non-rapid eye movement (NREM) sleep EEG (C3LM derivation) was used to calculate power in 0.25 Hz frequency bins between 0.75 and 16.0 Hz. Intraclass correlation coefficients (ICCs) were calculated to assess stable individual differences for baseline and recovery night spectra separately and combined. ICCs were high across all frequencies for baseline and recovery and for baseline and recovery combined. These results show that the spectrum of the NREM sleep EEG is substantially different among individuals, highly stable within individuals and robust to an experimental challenge (i.e. sleep deprivation) known to have considerable impact on the NREM sleep EEG. These findings indicate that the NREM sleep EEG represents a trait.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UNLABELLED Obstructive sleep apnea (OSA) is a frequent syndrome characterized by intermittent hypoxemia and increased prevalence of arterial hypertension and cardiovascular morbidity. In OSA, the presence of patent foramen ovale (PFO) is associated with increased number of apneas and more severe oxygen desaturation. We hypothesized that PFO closure improves sleep-disordered breathing and, in turn, has favorable effects on vascular function and arterial blood pressure. In 40 consecutive patients with newly diagnosed OSA, we searched for PFO. After initial cardiovascular assessment, the 14 patients with PFO underwent initial device closure and the 26 without PFO served as control group. Conventional treatment for OSA was postponed for 3 months in both groups, and polysomnographic and cardiovascular examinations were repeated at the end of the follow-up period. PFO closure significantly improved the apnea-hypopnea index (ΔAHI -7.9±10.4 versus +4.7±13.1 events/h, P=0.0009, PFO closure versus control), the oxygen desaturation index (ΔODI -7.6±16.6 versus +7.6±17.0 events/h, P=0.01), and the number of patients with severe OSA decreased significantly after PFO closure (79% versus 21%, P=0.007). The following cardiovascular parameters improved significantly in the PFO closure group, although remained unchanged in controls: brachial artery flow-mediated vasodilation, carotid artery stiffness, nocturnal systolic and diastolic blood pressure (-7 mm Hg, P=0.009 and -3 mm Hg, P=0.04, respectively), blood pressure dipping, and left ventricular diastolic function. In conclusion, PFO closure in OSA patients improves sleep-disordered breathing and nocturnal oxygenation. This translates into an improvement of endothelial function and vascular stiffening, a decrease of nighttime blood pressure, restoration of the dipping pattern, and improvement of left ventricular diastolic function. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01780207.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Chronic mountain sickness (CMS) is often associated with vascular dysfunction, but the underlying mechanism is unknown. Sleep disordered breathing (SDB) frequently occurs at high altitude. At low altitude SDB causes vascular dysfunction. Moreover, in SDB, transient elevations of right-sided cardiac pressure may cause right-to-left shunting in the presence of a patent foramen ovale (PFO) and, in turn, further aggravate hypoxemia and pulmonary hypertension. We speculated that compared to healthy high-altitude dwellers, in patients with CMS, SDB and nocturnal hypoxemia are more pronounced and related to vascular dysfunction. Methods We performed overnight sleep recordings, and measured systemic and pulmonary-artery pressure in 23 patients with CMS (mean±SD age 52.8±9.8 y) and 12 healthy controls (47.8±7.8 y) at 3600 m. In a subgroup of 15 subjects with SDB, we searched for PFO with transesophagal echocardiography. Results The major new findings were that in CMS patients, a) SDB and nocturnal hypoxemia was more severe (P<0.01) than in controls (apnea/hypopnea index, AHI, 38.9±25.5 vs. 14.3±7.8[nb/h]; SaO2, 80.2±3.6 vs. 86.8±1.7[%], CMS vs. controls), and b) AHI was directly correlated with systemic blood pressure (r=0.5216, P=0.001) and pulmonary-artery pressure (r=0.4497, P=0.024). PFO was associated with more severe SDB (AHI 48.8±24.7 vs. 14.8±7.3[nb/h], P=0.013, PFO vs. no PFO) and hypoxemia. Conclusion SDB and nocturnal hypoxemia are more severe in CMS patients than in controls and are associated with systemic and pulmonary vascular dysfunction. The presence of a PFO appeared to further aggravate SDB. Closure of PFO may improve SDB, hypoxemia and vascular dysfunction in CMS patients. Clinical Trials Gov Registration NCT01182792.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hypercoagulable state might be one important mechanism linking obstructive sleep apnea (OSA) with incident myocardial infarction and stroke. However, previous studies on prothrombotic factors in OSA are not uniform and cross-sectional. We longitudinally studied prothrombotic factors in relation to OSA risk, adjusting for baseline levels of prothrombotic factors, demographics, metabolic parameters, aspirin use, and life style factors. The Berlin Questionnaire and/or neck circumference were used to define high OSA risk in 329 South African teachers (48.0 % male, 44.6 % black) at baseline and at three-year follow-up. Von Willebrand factor (VWF), fibrinogen, D-dimer, plasminogen activator inhibitor-1, clot lysis time (CLT), and soluble urokinase-type plasminogen activator receptor (suPAR) were measured in plasma. At baseline 35.7 % of participants had a high risk of OSA. At follow-up, persistently high OSA risk, persistently low OSA risk, OSA risk remission, and new-onset OSA risk were present in 26.1 %, 53.2 %, 9.4 %, and 11.3 % of participants, respectively. New-onset OSA risk was associated with a significant and longitudinal increase in VWF, fibrinogen, CLT, and suPAR relative to persistently low OSA risk; in VWF, fibrinogen, and suPAR relative to remitted OSA risk; and in VWF relative to persistently high OSA risk. Persistently high OSA risk was associated with an increase in CLT and suPAR relative to persistently low OSA risk and in D-dimer relative to remitted OSA risk. Remitted OSA risk was associated with D-dimer decrease relative to persistently low OSA risk. In OSA, hypercoagulability is a dynamic process with a most prominent three-year increase in individuals with new-onset OSA risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to cognitive decline, individuals affected by Alzheimer's disease (AD) can experience important neuropsychiatric symptoms including sleep disturbances. We characterized the sleep-wake cycle in the TgCRND8 mouse model of AD, which overexpresses a mutant human form of amyloid precursor protein resulting in high levels of β-amyloid and plaque formation by 3 months of age. Polysomnographic recordings in freely-moving mice were conducted to study sleep-wake cycle architecture at 3, 7 and 11 months of age and corresponding levels of β-amyloid in brain regions regulating sleep-wake states were measured. At all ages, TgCRND8 mice showed increased wakefulness and reduced non-rapid eye movement (NREM) sleep during the resting and active phases. Increased wakefulness in TgCRND8 mice was accompanied by a shift in the waking power spectrum towards fast frequency oscillations in the beta (14-20 Hz) and low gamma range (20-50 Hz). Given the phenotype of hyperarousal observed in TgCRND8 mice, the role of noradrenergic transmission in the promotion of arousal, and previous work reporting an early disruption of the noradrenergic system in TgCRND8, we tested the effects of the alpha-1-adrenoreceptor antagonist, prazosin, on sleep-wake patterns in TgCRND8 and non-transgenic (NTg) mice. We found that a lower dose (2 mg/kg) of prazosin increased NREM sleep in NTg but not in TgCRND8 mice, whereas a higher dose (5 mg/kg) increased NREM sleep in both genotypes, suggesting altered sensitivity to noradrenergic blockade in TgCRND8 mice. Collectively our results demonstrate that amyloidosis in TgCRND8 mice is associated with sleep-wake cycle dysfunction, characterized by hyperarousal, validating this model as a tool towards understanding the relationship between β-amyloid overproduction and disrupted sleep-wake patterns in AD.