935 resultados para Simulation tool
Resumo:
A software tool (DRONE) has been developed to evaluate road traffic noise in a large area with the consideration of network dynamic traffic flow and the buildings. For more precise estimation of noise in urban network where vehicles are mainly in stop and go running conditions, vehicle sound power level (for acceleration/deceleration cruising and ideal vehicle) is incorporated in DRONE. The calculation performance of DRONE is increased by evaluating the noise in two steps of first estimating the unit noise database and then integrating it with traffic simulation. Details of the process from traffic simulation to contour maps are discussed in the paper and the implementation of DRONE on Tsukuba city is presented.
Resumo:
The progression of spinal deformity is traditionally monitored on hard copy radiographs using the Cobb method with a protractor and pencil. The rotation of the spine and ribcage (rib hump) in scoliosis is measured with a hand-held inclinometer/Scoliometer. The iPhone and other smart phones, can accurately sense inclination, and can therefore be used to measure Cobb angles and rib hump angulation. The purpose of this study was to quantify the performance of the iPhone compared to the standard protractor (Cobb angles) and the Scoliometer (rib hump).
Resumo:
This paper reports on the development and implementation of a self-report risk assessment tool that was developed in an attempt to increase the efficacy of crash prediction within Australian fleet settings. This study forms a part of a broader program of research into work related road safety and identification of driving risk. The first phase of the study involved a series of focus groups being conducted with 217 professional drivers which revealed that the following factors were proposed to influence driving performance: Fatigue, Knowledge of risk, Mood, Impatience and frustration, Speed limits, Experience, Other road users, Passengers, Health, and Culture. The second phase of the study involved piloting the newly developed 38 item Driving Risk Assessment Scale - Work Version (DRAS-WV) with 546 professional drivers. Factor analytic techniques identified a 9 factor solution that was comprised of speeding, aggression, time pressure, distraction, casualness, awareness, maintenance, fatigue and minor damage. Speeding and aggressive driving manoeuvres were identified to be the most frequent aberrant driving behaviours engaged in by the sample. However, a series of logistic regression analyses undertaken to determine the DRAS-WV scale’s ability to predict self-reported crashes revealed limited predictive efficacy e.g., 10% of crashes. This paper outlines proposed reasons for this limited predictive ability of the DRAS-WV as well as provides suggestions regarding the future of research that aims to develop methods to identify “at risk” drivers.
Resumo:
In microscopic traffic simulators, the interaction between vehicles is considered. The dynamics of the system then becomes an emergent property of the interaction between its components. Such interactions include lane-changing, car-following behaviours and intersection management. Although, in some cases, such simulators produce realistic prediction, they do not allow for an important aspect of the dynamics, that is, the driver-vehicle interaction. This paper introduces a physically sound vehicle-driver model for realistic microscopic simulation. By building a nanoscopic traffic simulation model that uses steering angle and throttle position as parameters, the model aims to overcome unrealistic acceleration and deceleration values, as found in various microscopic simulation tools. A physics engine calculates the driving force of the vehicle, and the preliminary results presented here, show that, through a realistic driver-vehicle-environment simulator, it becomes possible to model realistic driver and vehicle behaviours in a traffic simulation.
Resumo:
The most common software analysis tools available for measuring fluorescence images are for two-dimensional (2D) data that rely on manual settings for inclusion and exclusion of data points, and computer-aided pattern recognition to support the interpretation and findings of the analysis. It has become increasingly important to be able to measure fluorescence images constructed from three-dimensional (3D) datasets in order to be able to capture the complexity of cellular dynamics and understand the basis of cellular plasticity within biological systems. Sophisticated microscopy instruments have permitted the visualization of 3D fluorescence images through the acquisition of multispectral fluorescence images and powerful analytical software that reconstructs the images from confocal stacks that then provide a 3D representation of the collected 2D images. Advanced design-based stereology methods have progressed from the approximation and assumptions of the original model-based stereology(1) even in complex tissue sections(2). Despite these scientific advances in microscopy, a need remains for an automated analytic method that fully exploits the intrinsic 3D data to allow for the analysis and quantification of the complex changes in cell morphology, protein localization and receptor trafficking. Current techniques available to quantify fluorescence images include Meta-Morph (Molecular Devices, Sunnyvale, CA) and Image J (NIH) which provide manual analysis. Imaris (Andor Technology, Belfast, Northern Ireland) software provides the feature MeasurementPro, which allows the manual creation of measurement points that can be placed in a volume image or drawn on a series of 2D slices to create a 3D object. This method is useful for single-click point measurements to measure a line distance between two objects or to create a polygon that encloses a region of interest, but it is difficult to apply to complex cellular network structures. Filament Tracer (Andor) allows automatic detection of the 3D neuronal filament-like however, this module has been developed to measure defined structures such as neurons, which are comprised of dendrites, axons and spines (tree-like structure). This module has been ingeniously utilized to make morphological measurements to non-neuronal cells(3), however, the output data provide information of an extended cellular network by using a software that depends on a defined cell shape rather than being an amorphous-shaped cellular model. To overcome the issue of analyzing amorphous-shaped cells and making the software more suitable to a biological application, Imaris developed Imaris Cell. This was a scientific project with the Eidgenössische Technische Hochschule, which has been developed to calculate the relationship between cells and organelles. While the software enables the detection of biological constraints, by forcing one nucleus per cell and using cell membranes to segment cells, it cannot be utilized to analyze fluorescence data that are not continuous because ideally it builds cell surface without void spaces. To our knowledge, at present no user-modifiable automated approach that provides morphometric information from 3D fluorescence images has been developed that achieves cellular spatial information of an undefined shape (Figure 1). We have developed an analytical platform using the Imaris core software module and Imaris XT interfaced to MATLAB (Mat Works, Inc.). These tools allow the 3D measurement of cells without a pre-defined shape and with inconsistent fluorescence network components. Furthermore, this method will allow researchers who have extended expertise in biological systems, but not familiarity to computer applications, to perform quantification of morphological changes in cell dynamics.
The use of virtual prototyping to rehearse the sequence of construction work involving mobile cranes
Resumo:
Purpose – Rehearsing practical site operations is without doubt one of the most effective methods for minimising planning mistakes, because of the learning that takes place during the rehearsal activity. However, real rehearsal is not a practical solution for on-site construction activities, as it not only involves a considerable amount of cost but can also have adverse environmental implications. One approach to overcoming this is by the use of virtual rehearsals. The purpose of this paper is to investigate an approach to simulation of the motion of cranes in order to test the feasibility of associated construction sequencing and generate construction schedules for review and visualisation. Design/methodology/approach – The paper describes a system involving two technologies, virtual prototyping (VP) and four-dimensional (4D) simulation, to assist construction planners in testing the sequence of construction activities when mobile cranes are involved. The system consists of five modules, comprising input, database, equipment, process and output, and is capable of detecting potential collisions. A real-world trial is described in which the system was tested and validated. Findings – Feedback from the planners involved in the trial indicated that they found the system to be useful in its present form and that they would welcome its further development into a fully automated platform for validating construction sequencing decisions. Research limitations/implications – The tool has the potential to provide a cost-effective means of improving construction planning. However, it is limited at present to the specific case of crane movement under special consideration. Originality/value – This paper presents a large-scale, real life case of applying VP technology in planning construction processes and activities.
Resumo:
Identifying, modelling and documenting business processes usually require the collaboration of many stakeholders that may be spread across companies in inter-organizational settings. While modern process modelling technologies are beginning to provide a number of features to support remote, they lack support for visual cues used in co-located collaboration. In this paper, we examine the importance of visual cues for collaboration tasks in collaborative process modelling. Based on this analysis, we present a prototype 3D virtual world process modelling tool that supports a number of visual cues to facilitate remote collaborative process model creation and validation. We then report on a preliminary analysis of the technology. In conclusion, we proceed to describe the future direction of our research with regards to the theoretical contributions expected from the evaluation of the tool.
Resumo:
An approach for modeling passenger flows in airport terminals by a set of devised advanced traits of passengers is proposed. Advanced traits take into account a passenger’s cognitive preferences which would be the underlying motivations of route-choice decisions. Basic traits are the status of passengers such as travel class. Although the activities of passengers are normally regarded as stochastic and sometimes unpredictable, we advise that real scenarios of passenger flows are basically feasible to be compared with virtual simulations in terms of tactical route-choice decision-making by individual personals. Inside airport terminals, passengers are goal-directed and not only use standard processing check points but also behave discretionary activities during the course. In this paper, we integrated discretionary activities in the study to fulfill full-range of passenger flows. In the model passengers are built as intelligent agents who possess a bunch of initial basic traits and then can be categorized into ten distinguish groups in terms of route-choice preferences by inferring the results of advanced traits. An experiment is executed to demonstrate the capability to facilitate predicting passenger flows.
Resumo:
Recent management research has evidenced the significance of organizational social networks, and communication is believed to impact the interpersonal relationships. However, we have little knowledge on how communication affects organizational social networks. This paper studies the dynamics between organizational communication patterns and the growth of organizational social networks. We propose an organizational social network growth model, and then collect empirical data to test model validity. The simulation results agree well with the empirical data. The results of simulation experiments enrich our knowledge on communication with the findings that organizational management practices that discourage employees from communicating within and across group boundaries have disparate and significant negative effect on the social network’s density, scalar assortativity and discrete assortativity, each of which correlates with the organization’s performance. These findings also suggest concrete measures for management to construct and develop the organizational social network.
Resumo:
Background: Foot ulcers are a frequent reason for diabetes-related hospitalisation. Clinical training is known to have a beneficial impact on foot ulcer outcomes. Clinical training using simulation techniques has rarely been used in the management of diabetes-related foot complications or chronic wounds. Simulation can be defined as a device or environment that attempts to replicate the real world. The few non-web-based foot-related simulation courses have focused solely on training for a single skill or “part task” (for example, practicing ingrown toenail procedures on models). This pilot study aimed to primarily investigate the effect of a training program using multiple methods of simulation on participants’ clinical confidence in the management of foot ulcers. Methods: Sixteen podiatrists participated in a two-day Foot Ulcer Simulation Training (FUST) course. The course included pre-requisite web-based learning modules, practicing individual foot ulcer management part tasks (for example, debriding a model foot ulcer), and participating in replicated clinical consultation scenarios (for example, treating a standardised patient (actor) with a model foot ulcer). The primary outcome measure of the course was participants’ pre- and post completion of confidence surveys, using a five-point Likert scale (1 = Unacceptable-5 = Proficient). Participants’ knowledge, satisfaction and their perception of the relevance and fidelity (realism) of a range of course elements were also investigated. Parametric statistics were used to analyse the data. Pearson’s r was used for correlation, ANOVA for testing the differences between groups, and a paired-sample t-test to determine the significance between pre- and post-workshop scores. A minimum significance level of p < 0.05 was used. Results: An overall 42% improvement in clinical confidence was observed following completion of FUST (mean scores 3.10 compared to 4.40, p < 0.05). The lack of an overall significant change in knowledge scores reflected the participant populations’ high baseline knowledge and pre-requisite completion of web-based modules. Satisfaction, relevance and fidelity of all course elements were rated highly. Conclusions: This pilot study suggests simulation training programs can improve participants’ clinical confidence in the management of foot ulcers. The approach has the potential to enhance clinical training in diabetes-related foot complications and chronic wounds in general.
Resumo:
Traffic safety studies demand more than what current micro-simulation models can provide as they presume that all drivers of motor vehicles exhibit safe behaviours. Several car-following models are used in various micro-simulation models. This research compares the mainstream car following models’ capabilities of emulating precise driver behaviour parameters such as headways and Time to Collisions. The comparison firstly illustrates which model is more robust in the metric reproduction. Secondly, the study conducted a series of sensitivity tests to further explore the behaviour of each model. Based on the outcome of these two steps exploration of the models, a modified structure and parameters adjustment for each car-following model is proposed to simulate more realistic vehicle movements, particularly headways and Time to Collision, below a certain critical threshold. NGSIM vehicle trajectory data is used to evaluate the modified models performance to assess critical safety events within traffic flow. The simulation tests outcomes indicate that the proposed modified models produce better frequency of critical Time to Collision than the generic models, while the improvement on the headway is not significant. The outcome of this paper facilitates traffic safety assessment using microscopic simulation.
Resumo:
This paper documents the use of bibliometrics as a methodology to bring forth a structured, systematic and rigorous way to analyse and evaluate a range of literature. When starting out and reading broadly for my doctoral studies, one article by Trigwell and Prosser (1996b) led me to reflect about my level of comprehension as the content, concepts and methodology did not resonate with my epistemology. A disconnection between our paradigms emerged. Further reading unveiled the work by Doyle (1987) who categorised research in teaching and teacher education by three main areas: teacher characteristics, methods research and teacher behaviour. My growing concerns that there were gaps in the knowledge also exposed the difficulties in documenting said gaps. As an early researcher who required support to locate myself in the field and to find my research voice, I identified bibliometrics (Budd, 1988; Yeoh & Kaur, 2007) as an appropriate methodology to add value and rigour in three ways. Firstly, the application of bibliometrics to analyse articles is systematic, builds a picture from the characteristics of the literature, and offers a way to elicit themes within the categories. Secondly, by systematic analysis there is occasion to identify gaps within the body of work, limitations in methodology or areas in need of further research. Finally, extension and adaptation of the bibliometrics methodology, beyond citation or content analysis, to investigate the merit of methodology, participants and instruments as a determinant for research worth allowed the researcher to build confidence and contribute new knowledge to the field. Therefore, this paper frames research in the pedagogic field of Higher Education through teacher characteristics, methods research and teacher behaviour, visually represents the literature analysis and locates my research self within methods research. Through my research voice I will present the bibliometrics methodology, the outcomes and document the landscape of pedagogy in the field of Higher Education.
Resumo:
Background: Little is known about the supportive care needs of Indigenous people with cancer and to date, existing needs assessment tools have not considered cultural issues for this population. We aimed to adapt an existing supportive care needs assessment tool for use with Indigenous Australians with cancer. Methods: Face-to-face interviews with Indigenous cancer patients (n = 29) and five focus groups with Indigenous key-informants (n = 23) were conducted to assess the face and content validity, cultural acceptability, utility and relevance of the Supportive Care Needs Survey - Short Form 34 (SCNS-SF34) for use with Indigenous patients with cancer. Results: All items from the SCNS-SF34 were shortened and changed to use more appropriate language (e.g. the word 'anxiety' was substituted with 'worry'). Seven questions were omitted (e.g. items on death and future considerations) as they were deemed culturally inappropriate or irrelevant and 12 items were added (e.g. accessible transport). Optional instructions were added before the sexual items. The design and response format of the SCNS-SF34 was modified to make it easier to use for Indigenous cancer patients. Given the extensive modifications to the SCNS-SF34 and the liklihood of a different factor structure we consider this tool to be a new tool rather than a modification. The Supportive care needs assessment tool for Indigenous people (SCNAT-IP) shows promising face and content validity and will be useful in informing services where they need to direct their attention for these patients. Conclusions: Indigenous people with cancer have language, customs and specific needs that are not accommodated within the standard SCNS-SF34. Our SCNAT-IP improves acceptability, relevance and face validity for Indigenous-specific concerns. Our SCNAT-IP will allow screening for supportive care needs that are specific to Indigenous cancer patients' and greatly inform targeted policy development and practice.
Resumo:
Environmental and sustainability issues pose challenges for society. Although education is seen as being a contributor to addressing sustainability, teacher education has been slow to act in preparing future teachers to teach sustainability. Recent Australian curriculum documents nominate sustainability as one of three cross-curriculum priorities. In one Australian university course, an Ecological Footprint Calculator tool has been employed to challenge preservice early childhood teachers to consider the sustainability of their lifestyles as a means for engaging them in learning and teaching for sustainability. Students enrolled in an integrated arts and humanities subject voluntarily engaged with the online calculator and shared their findings on an electronic discussion forum. These postings then became the basis of qualitative analysis and discussion. Data categories included reactions and reflections on reasons for the ‘heaviness’ of their footprints , student reactions leading to actions to reduce their footprints, reflections on the implications of the footprint results for future teaching, reactions that considered the need for societal change, and reflections on the integration of sustainability with the visual arts. The power of the tool’s application to stimulate interest in sustainability and education for sustainability more broadly in teacher education is explored.
Resumo:
Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1=n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal. Funding source Cancer Australia (Department of Health and Ageing) Research Grant 614217