959 resultados para Simulation of Digital Communication Systems
Resumo:
The physical quality of Amazonian soils is relatively unexplored, due to the unique characteristics of these soils. The index of soil physical quality is a widely accepted measure of the structural quality of soils and has been used to specify the structural quality of some tropical soils, as for example of the Cerrado ecoregion of Brazil. The research objective was to evaluate the physical quality index of an Amazonian dystrophic Oxisol under different management systems. Soils under five managements were sampled in Paragominas, State of Pará: 1) a 20-year-old second-growth forest (Forest); 2) Brachiaria sp pasture; 3) four years of no-tillage (NT4.); 4) eight years of no-tillage (NT8); and 5) two years of conventional tillage (CT2). The soil samples were evaluated for bulk density, macro and microporosity and for soil water retention. The physical quality index of the samples was calculated and the resulting value correlated with soil organic matter, bulk density and porosity. The surface layers of all systems were more compacted than those of the forest. The physical quality of the soil was best represented by the relations of the S index to bulk density and soil organic matter.
Resumo:
A screened Rutherford cross section is modified by means of a correction factor to obtain the proper transport cross section computed by partial¿wave analysis. The correction factor is tabulated for electron energies in the range 0¿100 keV and for elements in the range from Z=4 to 82. The modified screened Rutherford cross section is shown to be useful as an approximation for the simulation of plural and multiple scattering. Its performance and limitations are exemplified for electrons scattered in Al and Au.
Resumo:
A Monte Carlo procedure to simulate the penetration and energy loss of low¿energy electron beams through solids is presented. Elastic collisions are described by using the method of partial waves for the screened Coulomb field of the nucleus. The atomic charge density is approximated by an analytical expression with parameters determined from the Dirac¿Hartree¿Fock¿Slater self¿consistent density obtained under Wigner¿Seitz boundary conditions in order to account for solid¿state effects; exchange effects are also accounted for by an energy¿dependent local correction. Elastic differential cross sections are then easily computed by combining the WKB and Born approximations to evaluate the phase shifts. Inelastic collisions are treated on the basis of a generalized oscillator strength model which gives inelastic mean free paths and stopping powers in good agreement with experimental data. This scattering model is accurate in the energy range from a few hundred eV up to about 50 keV. The reliability of the simulation method is analyzed by comparing simulation results and experimental data from backscattering and transmission measurements.
Resumo:
A screened Rutherford cross section is modified by means of a correction factor to obtain the proper transport cross section computed by partial¿wave analysis. The correction factor is tabulated for electron energies in the range 0¿100 keV and for elements in the range from Z=4 to 82. The modified screened Rutherford cross section is shown to be useful as an approximation for the simulation of plural and multiple scattering. Its performance and limitations are exemplified for electrons scattered in Al and Au.
Resumo:
The likelihood of significant exposure to drugs in infants through breast milk is poorly defined, given the difficulties of conducting pharmacokinetics (PK) studies. Using fluoxetine (FX) as an example, we conducted a proof-of-principle study applying population PK (popPK) modeling and simulation to estimate drug exposure in infants through breast milk. We simulated data for 1,000 mother-infant pairs, assuming conservatively that the FX clearance in an infant is 20% of the allometrically adjusted value in adults. The model-generated estimate of the milk-to-plasma ratio for FX (mean: 0.59) was consistent with those reported in other studies. The median infant-to-mother ratio of FX steady-state plasma concentrations predicted by the simulation was 8.5%. Although the disposition of the active metabolite, norfluoxetine, could not be modeled, popPK-informed simulation may be valid for other drugs, particularly those without active metabolites, thereby providing a practical alternative to conventional PK studies for exposure risk assessment in this population.
Resumo:
Selostus: Vertaileva tutkimus kahden paritusjärjestelmän vaikutuksista tarhattujen hopeakettujen penikoimisten ajoittumiseen
Resumo:
This document produced by the Iowa Department of Administrative Services has been developed to provide a multitude of information about executive branch agencies/department on a single sheet of paper. The facts provides general information, contact information, workforce data, leave and benefits information and affirmative action data.
Resumo:
The multiscale finite-volume (MSFV) method is designed to reduce the computational cost of elliptic and parabolic problems with highly heterogeneous anisotropic coefficients. The reduction is achieved by splitting the original global problem into a set of local problems (with approximate local boundary conditions) coupled by a coarse global problem. It has been shown recently that the numerical errors in MSFV results can be reduced systematically with an iterative procedure that provides a conservative velocity field after any iteration step. The iterative MSFV (i-MSFV) method can be obtained with an improved (smoothed) multiscale solution to enhance the localization conditions, with a Krylov subspace method [e.g., the generalized-minimal-residual (GMRES) algorithm] preconditioned by the MSFV system, or with a combination of both. In a multiphase-flow system, a balance between accuracy and computational efficiency should be achieved by finding a minimum number of i-MSFV iterations (on pressure), which is necessary to achieve the desired accuracy in the saturation solution. In this work, we extend the i-MSFV method to sequential implicit simulation of time-dependent problems. To control the error of the coupled saturation/pressure system, we analyze the transport error caused by an approximate velocity field. We then propose an error-control strategy on the basis of the residual of the pressure equation. At the beginning of simulation, the pressure solution is iterated until a specified accuracy is achieved. To minimize the number of iterations in a multiphase-flow problem, the solution at the previous timestep is used to improve the localization assumption at the current timestep. Additional iterations are used only when the residual becomes larger than a specified threshold value. Numerical results show that only a few iterations on average are necessary to improve the MSFV results significantly, even for very challenging problems. Therefore, the proposed adaptive strategy yields efficient and accurate simulation of multiphase flow in heterogeneous porous media.
Resumo:
The cropping system influences the interception of water by plants, water storage in depressions on the soil surface, water infiltration into the soil and runoff. The aim of this study was to quantify some hydrological processes under no tillage cropping systems at the edge of a slope, in 2009 and 2010, in a Humic Dystrudept soil, with the following treatments: corn, soybeans, and common beans alone; and intercropped corn and common bean. Treatments consisted of four simulated rainfall tests at different times, with a planned intensity of 64 mm h-1 and 90 min duration. The first test was applied 18 days after sowing, and the others at 39, 75 and 120 days after the first test. Different times of the simulated rainfall and stages of the crop cycle affected soil water content prior to the rain, and the time runoff began and its peak flow and, thus, the surface hydrological processes. The depth of the runoff and the depth of the water intercepted by the crop + soil infiltration + soil surface storage were affected by the crop systems and the rainfall applied at different times. The corn crop was the most effective treatment for controlling runoff, with a water loss ratio of 0.38, equivalent to 75 % of the water loss ratio exhibited by common bean (0.51), the least effective treatment in relation to the others. Total water loss by runoff decreased linearly with an increase in the time that runoff began, regardless of the treatment; however, soil water content on the gravimetric basis increased linearly from the beginning to the end of the rainfall.
Resumo:
Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR) and geostatistical (ordinary kriging and co-kriging). The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap). Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI), soil wetness index (SWI), normalized difference vegetation index (NDVI), and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.
Resumo:
We critically discuss relaxation experiments in magnetic systems that can be characterized in terms of an energy barrier distribution, showing that proper normalization of the relaxation data is needed whenever curves corresponding to different temperatures are to be compared. We show how these normalization factors can be obtained from experimental data by using the Tln (t/t0) scaling method without making any assumptions about the nature of the energy barrier distribution. The validity of the procedure is tested using a ferrofluid of Fe3O4 particles.
Resumo:
Organisations in Multi-Agent Systems (MAS) have proven to be successful in regulating agent societies. Nevertheless, changes in agents' behaviour or in the dynamics of the environment may lead to a poor fulfilment of the system's purposes, and so the entire organisation needs to be adapted. In this paper we focus on endowing the organisation with adaptation capabilities, instead of expecting agents to be capable of adapting the organisation by themselves. We regard this organisational adaptation as an assisting service provided by what we call the Assistance Layer. Our generic Two Level Assisted MAS Architecture (2-LAMA) incorporates such a layer. We empirically evaluate this approach by means of an agent-based simulator we have developed for the P2P sharing network domain. This simulator implements 2-LAMA architecture and supports the comparison between different adaptation methods, as well as, with the standard BitTorrent protocol. In particular, we present two alternatives to perform norm adaptation and one method to adapt agents'relationships. The results show improved performance and demonstrate that the cost of introducing an additional layer in charge of the system's adaptation is lower than its benefits.
Resumo:
Whole-body counting is a technique of choice for assessing the intake of gamma-emitting radionuclides. An appropriate calibration is necessary, which is done either by experimental measurement or by Monte Carlo (MC) calculation. The aim of this work was to validate a MC model for calibrating whole-body counters (WBCs) by comparing the results of computations with measurements performed on an anthropomorphic phantom and to investigate the effect of a change in phantom's position on the WBC counting sensitivity. GEANT MC code was used for the calculations, and an IGOR phantom loaded with several types of radionuclides was used for the experimental measurements. The results show a reasonable agreement between measurements and MC computation. A 1-cm error in phantom positioning changes the activity estimation by >2%. Considering that a 5-cm deviation of the positioning of the phantom may occur in a realistic counting scenario, this implies that the uncertainty of the activity measured by a WBC is ∼10-20%.