994 resultados para Simulate
Resumo:
The effects of the free-stream thermo-chemical state on the test model flow field in the high-enthalpy tunnel are studied numerically. The properties of the free-stream, which is in thermo-chemical non-equilibrium, are determined by calculating the nozzle flow field. A free-stream with total enthalpy equal to the real one in the tunnel while in thermo-chemical equilibrium is constructed artificially to simulate the natural atmosphere condition. The flow fields over the test models (blunt cone and Apollo command capsule model) under both the non-equilibrium and the virtual equilibrium free-stream conditions are calculated. By comparing the properties including pressure, temperature, species concentration and radiation distributions of these two types of flow fields, the effects of the non-equilibrium state of the free-stream in the high-enthalpy shock tunnel are analyzed.
Resumo:
An information preservation (IP) method has been used to simulate many micro scale gas flows. It may efficiently reduce the statistical scatter inherent in conventional particle approaches such as the direct simulation Monte Carlo (DSMC) method. This paper reviews applications of IP to some benchmark problems. Comparison of the IP results with those given by experiment, DSMC, and the linearized Boltzmann equation, as well as the Navier-Stokes equations with a slip boundary condition, and the lattice Boltzmann equation, shows that the IP method is applicable to micro scale gas flows over the entire flow regime from continuum to free molecular.
Resumo:
The conventional direct simulation Monte Carlo (DSMC) method has a strong restriction on the cell size because simulated particles are selected randomly within the cell for collisions. Cells with size larger than the molecular mean free path are generally not allowed in correct DSMC simulations. However, the cell-size induced numerical error can be controlled if the gradients of flow properties are properly involved during collisions. In this study, a large cell DSMC scheme is proposed to relax the cell size restriction. The scheme is applied to simulate several test problems and promising results are obtained even when the cell size is greater than 10 mean free paths of gas molecules. However, it is still necessary, of course, that the cell size be small with respect to the flow field structures that must be resolved.
Resumo:
The research progress on high-enthalpy and hypersorlic flows having been achieved in the Institute of Mechanics, Chinese Academy of Sciences, is reported in this paper. The paper consists of three main parts: The first part is on the techniques to develop advanced hypersonic test facilities, in which the detonation-driven shock-reflected tunnel and the detonation-driven shock-expanded tube are introduced. The shock tunnel can be used for generating hypersonic flows of a Mach number ranging from 10 to 20, and the expansion tube is applicable to simulate the flows with a speed of 7 similar to 10km/s. The second part is dedicated to the shock tunnel nozzle flow diagnosis to examine properties of the hypersonic flows thus created. The third part is on experiments and numerical simulations. The experiments include measuring the aerodynamic pitching moment and heat transfer in hypersonic flows, and the numerical work reports nozzle flow simulations and flow non-equilibrium effects on the possible experiments that may be carried out on the above-mentioned hypersonic test facilities.
Resumo:
The recent application of large-eddy simulation (LES) to particle-laden turbulence requires that the LES with a subgrid scale (SGS) model could accurately predict particle distributions. Usually, a SGS particle model is used to recover the small-scale structures of velocity fields. In this study, we propose a rescaling technique to recover the effects of small-scale motions on the preferential concentration of inertial particles. The technique is used to simulate particle distribution in isotropic turbulence by LES and produce consistent results with direct numerical simulation (DNS). Key words: particle distribution, particle-laden turbulence, large-eddy simulation, subgrid scale model.
Receptivity to free-stream disturbance waves for blunt cone axial symmetry hypersonic boundary layer
Resumo:
Based on high-order compact upwind scheme, a high-order shock-fitting finite difference scheme is studied to simulate the generation of boundary layer disturbance waves due to free-stream waves. Both steady and unsteady flow solutions of the receptivity problem are obtained by resolving the full Navier-Stokes equations. The interactions of bow-shock and free-stream disturbance are researched. Direct numerical simulation (DNS) of receptivity to free-stream disturbances for blunt cone hypersonic boundary layers is performed.
Resumo:
Algal blooms, worsening marine ecosystems and causing great economic loss, have been paid much attention to for a long time. Such environmental factors as light penetration, water temperature, and nutrient concentration are crucial in blooms processes. Among them, only nutrients can be controlled. Therefore, the threshold of nutrients for algal blooms is of great concern. To begin with, a dynamic eutrophication model has been constructed to simulate the algal growth and phosphorus cycling. The model encapsulates the essential biological processes of algal growth and decay, and phosphorus regeneration due to algal decay. The nutrient limitation is based upon commonly used Monod's kinetics. The effects of temperature and phosphorus limitation are particularly addressed. Then, we have endeavored to elucidate the threshold of phosphorus at different temperature for algal blooms. Based on the numerical simulation, the isoquant contours of change rate of alga as shown in the figure are obtained, which obviously demonstrate the threshold of nutrient at an arbitrary reasonable temperature. The larger the change rate is, the more rapidly the alga grows. If the phosphorus concentration at a given temperature remains larger than the threshold the algal biomass may increase monotonically, leading to the algal blooming. With the rising of temperature, the threshold is apparently reduced, which may explain why likely red tide disasters occur in a fine summer day. So, high temperature and sufficient phosphorus supply are the major factors which result in algal growth and blowout of red tide.
Resumo:
Adhesion forces of Dipalmitoylphosphatidylcholine ( DPPC) membrane in the gel phase are investigated by molecular dynamics ( MD) simulation. In the simulations, individual DPPC molecules are pulled out of DPPC membranes with different rates and we get the maximum adhesion forces of DPPC membrane. We find that the maximum adhesion forces increase with pull rate, from about 400 to 700 pN when pull rates are from 0.001 to 0.03 nm/ps. We analyze the relationship between pull rate and adhesion forces of different origins using Brownian dynamics and notice that viscosity of solvent plays an important role in adhesion forces. Then we simulate the motion of a single DPPC molecule in solvent and it elucidates that the maximum drag force is almost linear with respect to the pull rate. We use Stokes' relation to describe the motion of a single DPPC molecule and deduce the effective length of a DPPC molecule. Conformational analyses indicate that the free energy variation of a DPPC molecule inside and outside of the DPPC membrane is an essential part of adhesion energy.
Resumo:
Background: Gastrointestinal stromal tumours (GISTs) are the most common primary mesenchymal neoplasia in the gastrointestinal tract, although they represent only a small fraction of total gastrointestinal malignancies in adults (<2%). GISTs can be located at any level of the gastrointestinal tract; the stomach is the most common location (60-70%), in contrast to the rectum, which is most rare (4%). When a GIST invades into the adjacent prostate tissue, it can simulate prostate cancer. In this study, we report on a case comprising the unexpected collision between a rectal GIST tumour and a prostatic adenocarcinoma. Findings: We describe the complexity of the clinical, endoscopic and radiological diagnosis, of the differential diagnosis based on tumour biopsy, and of the role of neoadjuvant therapy using imatinib prior to surgical treatment. Conclusions: Although isolated cases of coexisting GISTs and prostatic adenocarcinomas have reviously been described, this is the first reported case in the medical literature of a collision tumour involving a rectal GIST and prostatic adenocarcinoma components.
Resumo:
[EN]This work analyzes the problem of community structure in real-world networks based on the synchronization of nonidentical coupled chaotic Rössler oscillators each one characterized by a defined natural frequency, and coupled according to a predefined network topology. The interaction scheme contemplates an uniformly increasing coupling force to simulate a society in which the association between the agents grows in time. To enhance the stability of the correlated states that could emerge from the synchronization process, we propose a parameterless mechanism that adapts the characteristic frequencies of coupled oscillators according to a dynamic connectivity matrix deduced from correlated data. We show that the characteristic frequency vector that results from the adaptation mechanism reveals the underlying community structure present in the network.
Resumo:
[EN] Background: Polymerase Chain Reaction (PCR) and Restriction Fragment Length Polymorphism of PCR products (PCR-RFLP) are extensively used molecular biology techniques. An exercise for the design and simulation of PCR and PCR-RFLP experiments will be a useful educational tool. Findings: An online PCR and PCR-RFLP exercise has been create that requires users to find the target genes,compare them, design primers, search for restriction endonucleases, and finally to simulate the experiment. Each user of the service is randomly assigned a gene from Escherichia coli; to complete the exercise, users must design an experiment capable of distinguishing among E. coli strains. By applying the experimental procedure to all completely sequenced E. coli, a basic understanding of strain comparison and clustering can also be acquired. Comparison of results obtained in different experiments is also very instructive. Conclusions: The exercise is freely available at http://insilico.ehu.es/edu.
Resumo:
We present a scheme for simulating relativistic quantum physics in circuit quantum electrodynamics. By using three classical microwave drives, we show that a superconducting qubit strongly coupled to a resonator field mode can be used to simulate the dynamics of the Dirac equation and Klein paradox in all regimes. Using the same setup we also propose the implementation of the Foldy-Wouthuysen canonical transformation, after which the time derivative of the position operator becomes a constant of the motion.
Resumo:
This paper studies the feasibility of calculating strains in aged F114 steel specimens with Fiber Bragg Grating (FBG) sensors and infrared thermography (IT) techniques. Two specimens have been conditioned under extreme temperature and relative humidity conditions making comparative tests of stress before and after aging using different adhesives. Moreover, a comparison has been made with IT tecniques and conventional methods for calculating stresses in F114 steel. Implementation of Structural Health Monitoring techniques on real aircraft during their life cycle requires a study of the behaviour of FBG sensors and their wiring under real conditions, before using them for a long time. To simulate aging, specimens were stored in a climate chamber at 70 degrees C and 90% RH for 60 days. This study is framed within the Structural Health Monitoring (SHM) and Non Destructuve Evaluation (NDE) research lines, integrated into the avionics area maintained by the Aeronautical Technologies Centre (CTA) and the University of the Basque Country (UPV/EHU).
Resumo:
2nd International Conference on Education and New Learning Technologies
Resumo:
(EuroPES 2009)