942 resultados para Silver Nitrate
Resumo:
The Mike Horse mine, in the Huddelston mining district, is fifty-two miles northwest of Helena, Montana. The mine was discovered in 1898 by Joseph Heitmiller. There was only minor production from the date of discovery until 1915; the main drawback being lack of good road.
Resumo:
Members of the plant NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family display protein sequence homology with the SLC15/PepT/PTR/POT family of peptide transporters in animals. In comparison to their animal and bacterial counterparts, these plant proteins transport a wide variety of substrates: nitrate, peptides, amino acids, dicarboxylates, glucosinolates, IAA, and ABA. The phylogenetic relationship of the members of the NRT1/PTR family in 31 fully sequenced plant genomes allowed the identification of unambiguous clades, defining eight subfamilies. The phylogenetic tree was used to determine a unified nomenclature of this family named NPF, for NRT1/PTR FAMILY. We propose that the members should be named accordingly: NPFX.Y, where X denotes the subfamily and Y the individual member within the species.
Resumo:
OBJECTIVE: (1) To describe the ultrasonographic appearance of multiple congenital ocular anomalies (MCOA) in the eyes of horses with the PMEL17 (Silver) mutant gene. (2) To compare the accuracy of B-mode ocular ultrasound to conventional direct ophthalmoscopy. ANIMALS STUDIED: Sixty-seven Comtois and 18 Rocky Mountain horses were included in the study. PROCEDURES: Horses were classified as being carriers or noncarriers of the PMEL17 mutant allele based on coat color or genetic testing. Direct ophthalmoscopy followed by standardized ultrasonographic examination was performed in all horses. RESULTS: Seventy-five of 85 horses (88.24%) carried at least one copy of the Silver mutant allele. Cornea globosa, severe iridal hypoplasia, uveal cysts, cataracts, and retinal detachment could be appreciated with ultrasound. Carrier horses had statistically significantly increased anterior chamber depth and decreased thickness of anterior uvea compared with noncarriers (P < 0.05). Uveal cysts had a wide range of location and ultrasonographic appearances. In 51/73 (69.86%) carrier horses, ultrasound detected ciliary cysts that were missed with direct ophthalmoscopy. CONCLUSIONS: In this study, ultrasonography was useful to identify uveal cysts in PMEL17 mutant carriers and to assess anterior chamber depth.
Resumo:
The role of Pleistocene glacial cycles in forming the contemporary genetic structure of organisms has been well studied in China with a particular focus on the Tibetan Plateau. However, China has a complex topography and diversity of local climates, and how glacial cycles may have shaped the subtropical and tropical biota of the region remains mostly unaddressed. To investigate the factors that affected the phylogeography and population history of a widely distributed and nondeciduous forest species, we analysed morphological characters, mitochondrial DNA sequences and nuclear microsatellite loci in the Silver Pheasant (Lophura nycthemera). In a pattern generally consistent with phenotypic clusters, but not nominal subspecies, deeply divergent mitochondrial lineages restricted to different geographic regions were detected. Coalescent simulations indicated that the time of main divergence events corresponded to major glacial periods in the Pleistocene and gene flow was only partially lowered by drainage barriers between some populations. Intraspecific cytonuclear discordance was revealed in mitochondrial lineages from Hainan Island and the Sichuan Basin with evidence of nuclear gene flow from neighbouring populations into the latter. Unexpectedly, hybridization was revealed in Yingjiang between the Silver Pheasant and Kalij Pheasant (Lophura leucomelanos) with wide genetic introgression at both the mtDNA and nuclear levels. Our results highlight a novel phylogeographic pattern in a subtropical area generated from the combined effects of climate oscillation, partial drainage barriers and interspecific hybridization. Cytonuclear discordance combined with morphological differentiation implies that complex historical factors shaped the divergence process in this biodiversity hot spot area of southern China.
Resumo:
Paleoecology can provide valuable insights into the ecology of species that complement observation and experiment-based assessments of climate impact dynamics. New paleoecological records (e.g., pollen, macrofossils) from the Italian Peninsula suggest a much wider climatic niche of the important European tree species Abies alba (silver fir) than observed in its present spatial range. To explore this discrepancy between current and past distribution of the species, we analyzed climatic data (temperature, precipitation, frost, humidity, sunshine) and vegetation-independent paleoclimatic reconstructions (e.g., lake levels, chironomids) and use global coupled carbon-cycle climate (NCAR CSM1.4) and dynamic vegetation (LandClim) modeling. The combined evidence suggests that during the mid-Holocene (6000 years ago), prior to humanization of vegetation, A. alba formed forests under conditions that exceeded the modern (1961-1990) upper temperature limit of the species by 5-7°C (July means). Annual precipitation during this natural period was comparable to today (>700-800 mm), with drier summers and wetter winters. In the meso-Mediterranean to sub-Mediterranean forests A. alba co-occurred with thermophilous taxa such as Quercus ilex, Q. pubescens, Olea europaea, Phillyrea, Arbutus, Cistus, Tilia, Ulmus, Acer, Hedera helix, Ilex aquifolium, Taxus, and Vitis. Results from the last interglacial (ca. 130 000-115 000 BP), when human impact was negligible, corroborate the Holocene evidence. Thermophilous Mediterranean A. alba stands became extinct during the last 5000 years when land-use pressure and specifically excessive anthropogenic fire and browsing disturbance increased. Our results imply that the ecology of this key European tree species is not yet well understood. On the basis of the reconstructed realized climatic niche of the species, we anticipate that the future geographic range of A. alba may not contract regardless of migration success, even if climate should become significantly warmer than today with summer temperatures increasing by up to 5-7°C, as long as precipitation does not fall below 700-800 mm/yr, and anthropogenic disturbance (e.g., fire, browsing) does not become excessive. Our finding contradicts recent studies that projected range contractions under global-warming scenarios, but did not factor how millennia of human impacts reduced the realized climatic niche of A. alba.
Resumo:
Owing to their antimicrobial properties, silver nanoparticles (NPs) are the most commonly used engineered nanomaterial for use in a wide array of consumer and medical applications. Many discussions are currently ongoing as to whether or not exposure of silver NPs to the ecosystem (i.e. plants and animals) may be conceived as harmful or not. Metallic silver, if released into the environment, can undergo chemical and biochemical conversion which strongly influence its availability towards any biological system. During this process, in the presence of moisture, silver can be oxidized resulting in the release of silver ions. To date, it is still debatable as to whether any biological impact of nanosized silver is relative to either its size, or to its ionic constitution. The aim of this review therefore is to provide a comprehensive, interdisciplinary overview--for biologists, chemists, toxicologists as well as physicists--regarding the production of silver NPs, its (as well as in their ionic form) chemical and biochemical behaviours towards/within a multitude of relative and realistic biological environments and also how such interactions may be correlated across a plethora of different biological organisms.
Resumo:
The major goal of this work was to define the role of accessory protein, NARJ, in assembly of nitrate reductase which is a membrane-bound multisubunit enzyme that can catalyze the reduction of nitrate to nitrite under anaerobic growth in E. coli. Nitrate reductase is encoded by the nar GHJI operon under control of the narG promoter. The purified nitrate reductase is composed of three subunits: $\alpha,\ \beta,$ and $\gamma.$ The NARJ protein which is encoded by the third gene (narJ) is not found to be associated with any of the purified preparations of the enzyme, but is required for active nitrate reductase. In this study the product of the narJ gene was identified. NARJ appeared to be produced at a reduced level, compared to the other proteins encoded by the nar operon. Since NARJ could not be overexpressed to a level for an efficient purification, NARJ was expressed and purified as a recombinant protein with polyhistidine tag. The recombinant protein NARJ-6His could functionally replace native NARJ. Purified NARJ-6His is a dimeric protein which contains no identifiable cofactors or unique secondary structure. NARJ was localized in the cytoplasm, and was not associated with nitrate reductase in the membrane. In vivo NARJ activated the $\alpha\beta$ complex and stabilized the $\alpha$ subunit against protease degradation. In the absence of the membrane-bound $\gamma$ subunit, NARJ formed an intermediate complex with $\alpha\beta$ in the cytosol. Based on these studies, NARJ fits the formal definition of a molecular chaperone. It appears to be required only for the biogenesis of nitrate reductase and, therefore, is defined as a private chaperone specifically involved in the assembly of nitrate reductase system. ^
Resumo:
Membrane bound, respiratory nitrate reductase in Escherichia coli is composed of three subunits, αβγ. The active complex is anchored to the membrane by membrane-integrated γ subunit and can reduce nitrate to nitrite with membrane quinones, (ubiquinone or menaquinone) as physiological electron donors. The transfer of electrons through the complex is thought to involve the sequence: membrane quinols → b-type hemes (γ subunit) → Fe-S centers (β subunit) → molybdopterin (α subunit) → nitrate. The enzyme can be assayed with the artificial electron donor reduced methyl viologen (MVH) which transfers electrons directly to the molybdopterin cofactor. These studies have focused on the possible role of protein-bound menaquinone in the structure and function of this multisubunit complex. ^ Nitrate reductase was purified as two distinct forms; after solubilization of membrane proteins with detergents, purification rendered an αβγ complex (holoenzyme) which catalyzes nitrate reduction with MVH or the quinols analogs, menadiol and duroquinol, as electron donors. Alternatively, heat-treatment of the membranes in the absence of detergents and subsequent purification of the active enzyme produced an αβ complex, which reduces nitrate only with MVH as electron donor. The active αβ dimer was also separated from γ subunit by heat treatment of the holoenzyme. ^ Menaquinone-9 was isolated directly from the purified αβ complex, and identified by mass spectrometry. Based on the composition of the membrane quinone pool, it was concluded that menaquinone-9 is sequestered from the membrane pool in a specifically protein-bound form. ^ The role of the bound menaquinone in the structure-function of nitrate reductase was also investigated, along with its participation in UV-light inactivation of the enzyme. Menaquinone-depleted nitrate reductase from a menaquinone deficient mutant retained activity with all electron donors and it remained sensitive to UV inactivation. However, the MVH-nitrate reductase activity and the rate of UV inactivation of the enzyme were significantly reduced and the optical properties of the enzyme were modified by the absence of the bound menaquinone-9. ^ Menaquinone-9 is not absolutely required for electron transfer in nitrate reductase but it appears to be specifically-bound during assembly of the complex and to enhance the transfer of electrons through the complex. The possible plasticity of the functional electron transfer pathway in nitrate reductase is discussed. ^
Resumo:
The nar operon, which encodes the nitrate reductase in Escherichia coli, can be induced under anaerobic conditions without nitrate to a low level and with nitrate to a maximum level. The anaerobic formation of nitrate reductase is dependent upon the fnr gene product while the narL gene product is required for further induction by nitrate. The sequence was determined across the entire promoter and regulatory region of the nar operon. The translational start site of the first structural gene of the nar operon, narG gene, was established by identifying the nucleotide sequence for the first 20 N-terminal amino acid residues of the alpha subunit of nitrate reductase. The transcriptional start site and the level of the transcript was determined by S1 mapping procedure. One major transcript was identified which was initiated 50 base pair (bp) upstream from the translational start site of the first structural gene. The synthesis of the transcript was repressed aerobically, fully induced by nitrate anaerobically, and greatly reduced in a ${\rm Fnr\sp-}$ mutant. Deletions were created in the 5$\sp\prime$ nar regulatory sequence with either an intact nar operon or a nar::lacZ fusion. The expression of the plasmids with deletions were determined in a strain with wild type fnr and narL loci, a Fnr- mutant strain and a NarL- mutant strain. These experiments demonstrated that the $5\sp\prime$ limit of the nar operon lies at about $-210$ bp from the transcription start site. The region required for anaerobic induction by the fnr gene product is located around $-60$ bp. Two putative narL recognition sites were identified, one of which is around $-200$ and another immediately adjacent to the fnr recognition region. The deletion of the sequences around $-200$ rendered the remaining narL complex repressive and thus decreased the expression of nar operon, suggesting that the two potential narL sites interact with each other over a significant length of DNA. ^
Resumo:
We have determined the flux of calcium, chloride and nitrate to the McMurdo Dry Valleys region by analysing snow pits for their chemical composition and their snow accumulation using multiple records spanning up to 48 years. The fluxes demonstrate patterns related to elevation and proximity to the ocean. In general, there is a strong relationship between the nitrate flux and snow accumulation, indicating that precipitation rates may have a great influence over the nitrogen concentrations in the soils of the valleys. Aeolian dust transport plays an important role in the deposition of some elements (e.g. C(2+)) into the McMurdo Dry Valleys' soils. Because of the antiquity of some of the soil surfaces in the McMurdo Dry Valleys regions, the accumulated atmospheric flux of salts to the soils has important ecological consequences. Although precipitation may be an important mechanism of salt deposition to the McMurdo Dry Valley surfaces, it is poorly understood because of difficulties in measurement and high losses from sublimation.
Resumo:
I modeled the cumulative impact of hydroelectric projects with and without commercial fishing weirs and water-control dams on the production, survival to the sea, and potential fecundity of migrating female silver-phase American eels, Anguilla rostrata in the Kennebec River basin, Maine, This river basin has 22 hydroelectric projects, 73 water-control dams, and 15 commercial fishing weir sites. The modeled area included an 8,324 km(2) segment of the drainage area between Merrymeeting Bay and the upper limit of American eel distribution in the basin. One set of input,, (assumed or real values) concerned population structure (Le., population density and sex ratio changes throughout the basin, female length-class distribution, and drainage area between dams), Another set concerned factors influencing survival and potential fecundity of migrating American eels (i.e., pathway sequences through projects, survival rate per project by length-class. and length-fecundity relationship). Under baseline conditions about 402,400 simulated silver female American eels would be produced annually reductions in their numbers due to dams and weirs would reduce the realized fecundity (i.e., the number of eggs produced by all females that survived the migration). Without weirs or water-control dams, about 63% of the simulated silverphase American eels survived their freshwater spawning migration run to the sea when the survival rate at each hydroelectric dam was 9017, 40% survived at 80% survival per dam, and 18% survived at 60% survival per dam. Removing the lowermost hydroelectric dam on the Kennebec River increased survival by 6.0-7.6% for the basin. The efficient commercial weirs reduced survival to the sea to 69-76%( of what it would have been without weirs', regardless of survival rates at hydroelectric dams. Water-control dams had little impact on production in this basin because most were located in the upper reaches of tributaries. Sensitivity analysis led to the conclusion that small changes in population density and female length distribution had greater effects on survival and realized fecundity than similar changes in turbine survival rate. The latter became more important as turbine survival rate decreased. Therefore, it might be more fruitful to determine population distribution in basins of interest than to determine mortality rate at each hydroelectric project.