903 resultados para Silicone oils
Resumo:
It was found that fish livers from the Amazon have considerable amounts of vitamins A, D and E compared with the values of the standartized cod-liver oil. Tambaqui liver oil has high concentration of vitamin A1(retinol) and vitamin A2 (degidroretinol) whereas the liver oils of pirarucu and cuiu-cuiu have preferently the vitamin A2. The contents of the vitamins D and E observed in the liver oils of tambaqui and cuiu-cuiu was extremely high.
Resumo:
The major constituents of the leaf essential oil of P. unifoliolatumare trans-caryophyllene (37.45%), limonene (24.23%) and α-humulene (9.94%).
Resumo:
The essential oils from leaves and thin branches of Piper amapense, Piper ducket and Piper bartlingianum were analysed by GC/MS and all volatile compounds were identified as sesquiterpenes. The main constitutents identified in the oil of P. amapense were trans-caryophyllene (25.0%), caryophyllene oxide (17.0%) and β-selinene (15.0%). The oil of P. duckei was dominated by trans-caryophyllene (23.5%), caryophyllene oxide (18.4%), β-eudesmol (9.4%) and a-eudesmol (9.1%). The major components found in the oil of P. bartlingianum were
Resumo:
Premature degradation of ordinary Portland cement (OPC) concrete infrastructures is a current and serious problem with overwhelming costs amounting to several trillion dollars. The use of concrete surface treatments with waterproofing materials to prevent the access of aggressive substances is an important way of enhancing concrete durability. The most common surface treatments use polymeric resins based on epoxy, silicone (siloxane), acrylics, polyurethanes or polymethacrylate. However, epoxy resins have low resistance to ultraviolet radiation while polyurethanes are sensitive to high alkalinity environments. Geopolymers constitute a group of materials with high resistance to chemical attack that could also be used for coating of concrete infrastructures exposed to harsh chemical environments. This article presents results of an experimental investigation on the resistance to chemical attack (by sulfuric and nitric acid) of several materials: OPC concrete, high performance concrete (HPC), epoxy resin, acrylic painting and a fly ash based geopolymeric mortar. Three types of acids, each with high concentrations of 10%, 20% and 30%, were used to simulate long term degradation by chemical attack. The results show that the epoxy resin had the best resistance to chemical attack, irrespective of the acid type and acid concentration.
Resumo:
Foi enfocada a contribuição de nutrientes da água escorrida pelo caule (CE), na ciclagem hidroquímica em floresta primária explorada, em Benevides, PA. A concentração de nutrientes na CE foi avaliada de dezembro de 1993 a abril de 1995, mediante coletores tipo colarinho, construídos com espuma de silicone, acoplados por tubos a recipientes plásticos. O monitoramento de CE se restringiu a doze árvores, nas quais foram coletadas mensalmente amostras para análise química de K+, Na+, Ca2+ e Mg2+ por espectrofotometria de absorção atômica, o N-NH4+, N-NO3 - e P-PO4 3- por colorimetria, em espectofotômetro de fluxo contínuo, o N-total por micro Kjeldahl e pH por potenciometria. A quantidade de nutrientes trazidos pela CE foi maior no início da época chuvosa, exibindo marcante variabilidade temporal para K+, Na+, Ca2+, Mg2+, N-total, SO4 2-, enquanto que o oposto aconteceu com PO4 3-. A magnitude na concentração dos nutrientes decresceu na seguinte ordem: K+ > Na+ > Ca2+ > N-t > SO4 2- > Mg2+ > PO4 3-. A distribuição e a intensidade de chuva não influenciam marcantemente o pH na CE.
Resumo:
A substantial part of the world building heritage has been performed by earthen building. The durability of this existing heritage and mainly of the new buildings built with earth is particularly conditioned by the erosion caused by water action, especially in countries with high levels of rainfall. This research aims to contribute to the increase of knowledge about the ancient building techniques that provide enhanced durability. It is possible to analyse the ancestral practices used to protect the earth material from the water action in order to understand how the old earthen buildings were preserved over the centuries, resisting to harsh weather conditions. Among these techniques are: the incorporation of biopolymers (such as oils or fats from animal or vegetable origin); the addition of some minerals; and the earth stabilization with lime. However, this knowledge seems to be forgotten, probably due to the prejudice related to earthen constructions, which several times are associated with a poor building. This research also focuses on the study of new methods of earth stabilization with lime and biopolymers, adapting the ancient knowledge to improve the durability related to the water action. Therefore, alternative solutions can be obtained to improve the performance of earthen buildings, mainly the resistance of the material in the presence of water, reducing its permeability to water. In addition, with the proposed solutions it is possible to obtain good levels of water vapour permeability, one of the major advantages of the construction with earth.
Resumo:
Tese de Doutoramento em Ciências - Especialidade em Biologia
Resumo:
Tese de Doutoramento Engenharia Têxtil.
Resumo:
Purpose: To evaluate the impact of eye and head rotation in the measurement of peripheral refraction with an open-field autorefractometer in myopic eyes wearing two different center-distance designs of multifocal contact lenses (MFCLs). Methods: Nineteen right eyes from 19 myopic patients (average central M ± SD = −2.67 ± 1.66 D) aged 20–27 years (mean ± SD = 23.2 ± 3.3 years) were evaluated using a Grand-Seiko autorefractometer. Patients were fitted with one multifocal aspheric center-distance contact lens (Biofinity Multifocal D®) and with one multi-concentric MFCL (Acuvue Oasys for Presbyopia). Axial and peripheral refraction were evaluated by eye rotation and by head rotation under naked eye condition and with each MFCL fitted randomly and in independent sessions. Results: For the naked eye, refractive pattern (M, J0 and J45) across the central 60◦ of the horizontal visual field values did not show significant changes measured by rotating the eye or rotating the head (p > 0.05). Similar results were obtained wearing the Biofinity D, for both testing methods, no obtaining significant differences to M, J0 and J45 values (p > 0.05). For Acuvue Oasys for presbyopia, also no differences were found when comparing measurements obtained by eye and head rotation (p > 0.05). Multivariate analysis did not showed a significant interaction between testing method and lens type neither with measuring locations (MANOVA, p > 0.05). There were significant differences in M and J0 values between naked eyes and each MFCL. Conclusion: Measurements of peripheral refraction by rotating the eye or rotating the head in myopic patients wearing dominant design or multi-concentric multifocal silicone hydrogel contact lens are comparable.
Resumo:
The tocopherol content of Brazil nut oil from different Amazon regions (Manicoré-AM, Rio Preto da Eva-AM, São João da Baliza-RR, Caroebe-RR, Belém-PA, and Xapurí-AC) was investigated by normal-phase high-performance liquid chromatography. For all authentic oils, two isomers: α- and γ-tocopherols were observed (37.92-74.48 µg g-1, 106.88-171.80 µg g-1, respectively), and their levels were relatively constant among the oils having these geographic origins, which would enable to distinguish Brazil nut oil from other plant oils for authentication purposes. Commercial Brazil nut oils were also evaluated, and some of these oils demonstrated a tocopherol content that was very different from that of the authentic oils. Therefore, we suggest that the tocopherol profile of Brazil nut oil can be useful chemical marker for quality control and authentication.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
Resumo:
Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.
Resumo:
Tese de Doutoramento em Ciências (Especialidade em Química)
Resumo:
[Excerpt] The growing global demand for new energy sources combined with environmental concerns had motivated the search for alternative fuels, produced from renewable raw materials. During the last decade, ethanol was considered the next generation of biofuels. But more recently, n-butanol gained attention due to its superior fuel properties when compared with ethanol. Although n-butanol is naturally produced by solventogenic bacteria through ABE fermentation, the low productivities obtained with this bioprocess discouraged its use. Thus, most of n-butanol produced nowadays is chemical synthesized via petrochemical routes and its price is extremely sensitive to crude oil’s price. One possible approach to overcome this issue is to express non-native pathways in microbial factories. (...)
Resumo:
Fat, oils, and grease present in complex wastewater can be readily converted to methane, but the energy potential of these compounds is not always recyclable, due to incomplete degradation of long chain fatty acids (LCFA) released during lipids hydrolysis. Oleate (C18:1) is generally the dominant LCFA in lipid-containing wastewater, and its conversion in anaerobic bioreactors results in palmitate (C16:0) accumulation. The reason why oleate is continuously converted to palmitate without further degradation via β-oxidation is still unknown. In this work, the influence of methanogenic activity in the initial conversion steps of unsaturated LCFA was studied in 10 bioreactors continuously operated with saturated or unsaturated C16- and C18-LCFA, in the presence or absence of the methanogenic inhibitor bromoethanesulfonate (BrES). Saturated Cn-2-LCFA accumulated both in the presence and absence of BrES during the degradation of unsaturated Cn-LCFA, and represented more than 50\% of total LCFA. In the presence of BrES further conversion of saturated intermediates did not proceed, not even when prolonged batch incubation was applied. As the initial steps of unsaturated LCFA degradation proceed uncoupled from methanogenesis, accumulation of saturated LCFA can be expected. Analysis of the active microbial communities suggests a role for facultative anaerobic bacteria in the initial steps of unsaturated LCFA biodegradation. Understanding this role is now imperative to optimize methane production from LCFA.