918 resultados para Serotonin Transporter
Resumo:
Differences between the respiratory chain of the fungus Paracoccidioides brasiliensis and its mammalian host are reported. Respiration, membrane potential, and oxidative phosphorylation in mitochondria from P. brasiliensis spheroplasts were evaluated in situ, and the presence of a complete (Complex I-V) functional respiratory chain was demonstrated. In succinate-energized mitochondria, ADP induced a transition from resting to phosphorylating respiration. The presence of an alternative NADH-ubiquinone oxidoreductase was indicated by: (i) the ability to oxidize exogenous NADH and (ii) the lack of sensitivity to rotenone and presence of sensitivity to flavone. Malate/NAD(+)-supported respiration suggested the presence of either a mitochondrial pyridine transporter or a glyoxylate pathway contributing to NADH and/or succinate production. Partial sensitivity of NADH/succinate-supported respiration to antimycin A and cyanide, as well as sensitivity to benzohydroxamic acids, suggested the presence of an alternative oxidase in the yeast form of the fungus. An increase in activity and gene expression of the alternative NADH dehydrogenase throughout the yeast`s exponential growth phase was observed. This increase was coupled with a decrease in Complex I activity and gene expression of its subunit 6. These results support the existence of alternative respiratory chain pathways in addition to Complex I, as well as the utilization of NADH-linked substrates by P. brasiliensis. These specific components of the respiratory chain could be useful for further research and development of pharmacological agents against the fungus.
Resumo:
Rationale Serotonin in the dorsal periaqueductal gray (DPAG) through the activation of 5-HT(1A) and 5-HT(2A) receptors inhibits escape, a defensive behavior associated with panic attacks. Long-term treatment with antipanic drugs that nonselectively or selectively blocks the reuptake of serotonin (e.g., imipramine and fluoxetine, respectively) enhances the inhibitory effect on escape caused by intra-DPAG injection of 5-HT(1A) and 5-HT(2A) receptor agonists. It has been proposed that these compounds exert their effect on panic by facilitating 5-HT-mediated neurotransmission in the DPAG. Objectives The objective of this study was to investigate whether facilitation of 5-HT neurotransmission in the DPAG is also observed after treatment with alprazolam, a pharmacologically distinct antipanic drug that acts primarily as a high potency benzodiazepine receptor agonist. Materials and methods Male Wistar rats, subchronically (3-6 days) or chronically (14-17 days) treated with alprazolam (2 and 4 mg/kg, i.p.) were intra-DPAG injected with (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT), (+/-)-1-(2,5-dimethoxy-4-iodophenyl) piperazine dihydrochloride (DOI), and midazolam, respectively, 5-HT(1A), 5-HT(2A/2C), and benzodiazepine receptor agonists. The intensity of electrical current that needed to be applied to the DPAG to evoke escape behavior was measured before and after the microinjection of these agonists. Results Intra-DPAG injection of the 5-HT agonists and midazolam increased the escape threshold in all groups of animals tested, indicating a panicolytic-like effect. The inhibitory effect of 8-OH-DPAT and DOI, but not midazolam, was significantly higher in animals receiving long-, but not short-term treatment with alprazolam. Conclusions Alprazolam as antidepressants compounds facilitates 5-HT(1A)- and 5-HT(2A)-receptor-mediated neurotransmission in the DPAG, implicating this effect in the mode of action of different classes of antipanic drugs.
Resumo:
Phosphate is an ion that is essential for fungal growth. The systems for inorganic phosphate (Pi) acquisition in eukaryotic cells (PHO) have been characterized as a low-affinity (that assures a supply of Pi at normal or high external Pi concentrations) and a high-affinity (activated in response to Pi starvation). Here, as an initial step to understand the PHO pathway in Aspergillus fumigatus, we characterized the PH080 homologue, PhoB(PHO80). We show that the Delta phoB(PHO80) mutant has a polar growth defect (i.e., a delayed germ tube emergence) and, by phenotypic and phosphate uptake analyses, establish a link between PhoB(PHO80), calcineurin and calcium metabolism. Microarray hybridizations carried out with RNA obtained from wild-type and Delta phoB(PHO80) mutant cells identify Afu4g03610 (phoD(PHO84)), Afu7g06350 (phoE(PHO89)), Afu4g06020 (phoC(PHO81)), and Afu2g09040 (vacuolar transporter Vtc4) as more expressed both in the Delta phoB(PHO80) mutant background and under phosphate-limiting conditions of 0.1 mM P-i. Epifluorescence microscopy revealed accumulation of poly-phosphate in Delta phoB(PHO80) vacuoles, which was independent of extracellular phosphate concentration. Surprisingly, a phoD(PHO84) deletion mutant is indistinguishable phenotypically from the corresponding wild-type strain. mRNA analyses suggest that protein kinase A absence supports the expression of PHO genes in A. fumigatus. Furthermore, Delta phoB(PHO80) and Delta phoD(PHO84) mutant are fully virulent in a murine low dose model for invasive aspergillosis. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The protein phosphatase calcineurin is an important mediator connecting calcium-dependent signalling to various cellular responses in multiple organisms. In fungi calcineurin acts largely through regulating Crz1p-like transcription factors. Here we characterize an Aspergillus fumigatus CRZ1 homologue, CrzA and demonstrate its mediation of cellular tolerance to increased concentrations of calcium and manganese. In addition to acute sensitivitiy to these ions, and decreased conidiation, the crzA null mutant suffers altered expression of calcium transporter mRNAs under high concentrations of calcium, and loss of virulence when compared with the corresponding complemented and wild-type strains. We use multiple expression analyses to probe the transcriptional basis of A. fumigatus calcium tolerance identifying several genes having calA and/or crzA dependent mRNA accumulation patterns. We also demonstrate that contrary to previous findings, the gene encoding the Aspergillus nidulans calcineurin subunit homologue, cnaA, is not essential and that the cnaA deletion mutant shares the morphological phenotypes observed in the corresponding A. fumigatus mutant, Delta calA. Exploiting the A. nidulans model system, we have linked calcineurin activity with asexual developmental induction, finding that CrzA supports appropriate developmental induction in a calcineurin and brlA-dependent manner in both species.
Resumo:
Simultaneous measurements of pulmonary blood flow (qPA), coeliacomesenteric blood flow (qCoA), dorsal aortic blood pressure (PDA), heart rate (fH) and branchial ventilation frequency (fv) were made in the Australian lungfish, /Neoceratodus forsteri, /during air breathing and aquatic hypoxia. The cholinergic and adrenergic influences on the cardiovascular system were investigated during normoxia using pharmacological agents, and the presence of catecholamines and serotonin in different tissues was investigated using histochemistry. Air breathing rarely occurred during normoxia but when it did, it was always associated with increased pulmonary blood flow. The pulmonary vasculature is influenced by both a cholinergic and adrenergic tonus whereas the coeliacomesenteric vasculature is influenced by a β-adrenergic vasodilator mechanism. No adrenergic nerve fibers could be demonstrated in /Neoceratodus /but catecholamine-containing endothelial cells were found in the atrium of the heart. In addition, serotonin-immunoreactive cells were demonstrated in the pulmonary epithelium. The most prominent response to aquatic hypoxia was an increase in gill breathing frequency followed by an increased number of air breaths together with increased pulmonary blood flow. It is clear from the present investigation that /Neoceratodus /is able to match cardiovascular performance to meet the changes in respiration during hypoxia.
Resumo:
Whole body glucose homeostasis is dependent on the action of insulin. In muscle and adipose tissues, insulin stimulates glucose uptake by inducing the translocation of vesicles containing the glucose transporter GLUT4 to the cell surface. While the mechanisms of insulin-regulated GLUT4 translocation are not fully understood, some signaling intermediates have been implicated in this process. Interestingly, som: of these intermediates, including IRS-1 and PI3K, have been localised to the same intracellular membrane fraction as the GLUT4 storage pool, designated here as the high-speed pellet (HSP) fraction. This raises the possibility that many of the downstream insulin signaling intermediates may be located within close proximity to intracellular GLUT4. The goal of this study was to test this hypothesis in 3T3-L1 adipocytes. A large proportion of adipocyte phosphoproteins co-fractionated in the HSP fraction. In an attempt to resolve insulin-regulatable phosphoproteins, we subjected P-32-labeled subcellular fractions to two-dimensional gel electrophoresis (2-DE). Insulin reproducibly stimulated the phosphorylation of 12 spots in the HSP fraction. Most of the HSP phosphoproteins were insoluble in the nonionic detergent Triton X-100, whereas integral membrane proteins such as GLUT4 and intracellular caveolin were soluble under the same conditions. These results suggest that insulin-regulatable phosphoproteins in adipocytes may be organized in microdomains within the cell and that this assembly may act as an efficient conductor of the signaling proteins to rapidly facilitate downstream biological responses. Further study is required to establish the molecular basis for these detergent-insoluble signaling complexes.
Resumo:
Efficiency of presentation of a peptide epitope by a MHC class I molecule depends on two parameters: its binding to the MHC molecule and its generation by intracellular Ag processing. In contrast to the former parameter, the mechanisms underlying peptide selection in Ag processing are poorly understood. Peptide translocation by the TAP transporter is required for presentation of most epitopes and may modulate peptide supply to MHC class I molecules. To study the role of human TAP for peptide presentation by individual HLA class I molecules, we generated artificial neural networks capable of predicting the affinity of TAP for random sequence 9-mer peptides. Using neural network-based predictions of TAP affinity, we found that peptides eluted from three different HLA class I molecules had higher TAP affinities than control peptides with equal binding affinities for the same HLA class I molecules, suggesting that human TAP may contribute to epitope selection. In simulated TAP binding experiments with 408 HLA class I binding peptides, HLA class I molecules differed significantly with respect to TAP affinities of their ligands, As a result, some class I molecules, especially HLA-B27, may be particularly efficient in presentation of cytosolic peptides with low concentrations, while most class I molecules may predominantly present abundant cytosolic peptides.
Resumo:
The identity of the potassium channel underlying the slow, apamin-insensitive component of the afterhyperpolarization current (sl(AHP)) remains unknown. We studied sl(AHP) in CA1 pyramidal neurons using simultaneous whole-cell recording, calcium fluorescence imaging, and flash photolysis of caged compounds. Intracellular calcium concentration ([Ca2+](i)) peaked earlier and decayed more rapidly than sl(AHP). Loading cells with low concentrations of the calcium chelator EGTA slowed the activation and decay of sl(AHP). In the presence of EGTA, intracellular calcium decayed with two time constants. When [Ca2+](i) was increased rapidly after photolysis of DM-Nitrophen, both apamin-sensitive and apamin-insensitive outward currents were activated. The apamin-sensitive current activated rapidly (<20 msec), whereas the apamin-insensitive current activated more slowly (180 msec). The apamin-insensitive current was reduced by application of serotonin and carbachol, confirming that it was caused by sl(AHP) channels. When [Ca2+](i) was decreased rapidly via photolysis of diazo-2, the decay of sl(AHP) was similar to control (1.7 sec). All results could be reproduced by a model potassium channel gated by calcium, suggesting that the channels underlying sl(AHP) have intrinsically slow kinetics because of their high affinity for calcium.
Resumo:
Until now, it has been unclear whether murine cytomegalovirus (MCMV)-encoded protein m144 directly regulates natural killer (NK) cell effector function and whether the effects of m144 are only strictly evident in the context of MCMV infection. We have generated clones of the transporter associated with antigen processing (TAP)-2-deficient RMA-S T lymphoma cell line and its parent cell line, RMA, that stably express significant and equivalent levels of m144. In vivo NK cell-mediated rejection of RMA-S-m144 lymphomas was reduced compared with rejection of parental or mock-transfected RMA-S clones, indicating the ability of m144 to regulate NK cell-mediated responses in vivo. Significantly, the accumulation of NK cells in the peritoneum was reduced in mice challenged with RMA-S-m144, as was the lytic activity of NK cells recovered from the peritoneum. Expression of m144 on RMA-S cells also conferred resistance to cytotoxicity mediated in vitro by interleukin 2-activated adherent spleen NK cells. In summary, the data demonstrate that m144 confers some protection from NK cell effector function mediated in the absence of target cell class I expression, but that in vivo the major effect of m144 is to regulate NK cell accumulation and activation at the site of immune challenge.
Resumo:
Insulin stimulates glucose uptake into muscle and fat cells by promoting the translocation of glucose transporter 4 (GLUT4) to the cell surface. Phosphatidylinositide 3-kinase (PI3K) has been implicated in this process. However, the involvement of protein kinase B (PKB)/Akt, a downstream target of PI3K in regulation of GLUT4 translocation, has been controversial. Here we report that microinjection of a PKB substrate peptide or an antibody to PKB inhibited insulin-stimulated GLUT4 translocation to the plasma membrane by 66 or 56%, respectively. We further examined the activation of PKB isoforms following treatment of cells with insulin or platelet-derived growth factor (PDGF) and found that PKB beta is preferentially expressed in both rat and 3T3-L1 adipocytes, whereas PKB alpha expression is down-regulated in 3T3-L1 adipocytes. A switch in growth factor response was also observed when 3T3-L1 fibroblasts were differentiated into adipocytes. While PDGF was more efficacious than insulin in stimulating PKB phosphorylation in fibroblasts, PDGF did not stimulate PKB beta phosphorylation to any significant extent in adipocytes, as assessed by several methods. Moreover, insulin, but not PDGF, stimulated the translocation of PKB beta to the plasma membrane and high-density microsome fractions of 3T3-L1 adipocytes. These results support a role for PKB beta in insulin-stimulated glucose transport in adipocytes.
Resumo:
MDMA (3,4-methylenedioxymethamphetamine) is an amphetamine analogue that produces euphoric and stimulant effects and a feeling of closeness towards others.1 and 2 For more than a decade, MDMA (colloquially known as “Ecstasy” or “E”) has been widely used by young adults as a dance-party drug. The usual recreational oral dose is 1-2 tablets (each containing about 60-120 mg of MDMA) a standard oral dose of 0·75–4·00 mg per kg in 60–80 kg people. MDMA is typically used once fortnightly or less because tolerance to the effects of MDMA develops rapidly. More frequent use requires larger doses to achieve the desired effects, but this increases the prevalence of unpleasant side-effects.3 A number of deaths have occurred as a result of malignant hyperthermia or idiosyncractic reactions to the drug, but these have been rare.4 MDMA is perceived by many users to be a safe drug.1 Few report the craving associated with opiates or cocaine3 and most MDMA users are aware of only mild and transient disruptions of functioning.3 and 5 AC Parrott and J Lasky, Ecstasy (MDMA) effects upon mood and cognition: before, during and after a Saturday night dance, Psychopharmacology 139 (1998), pp. 261–268. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (174)5 The perceived safety of MDMA is at odds with animal evidence of MDMA neurotoxicity, an increasing prevalence of hazardous patterns of use among recreational MDMA users, and emerging evidence of neurotoxicity among heavier MDMA users.
Resumo:
Interferon alfa therapy for chronic hepatitis C infection is commonly associated with neuropsychiatric symptoms, including depression. These side effects may necessitate reduction or even cessation of interferon alfa, hut there is little information regarding the management of this important problem. We report 10 cases of interferon-alfa-induced depressive disorder treated with the selective serotonin reuptake inhibitor sertraline. All patients obtained rapid symptom relief without the need for reduction or cessation of interferon alfa.
Resumo:
Screaming and other types of disruptive vocalization are commonly observed among nursing home residents. Depressive symptoms are also frequently seen in this group, although the relationship between disruptive vocalization and depressive symptoms is unclear. Accordingly, we sought to examine this relationship in older nursing home residents. We undertook a controlled comparison of 41 vocally disruptive nursing home residents and 43 non-vocally-disruptive nursing home residents. All participants were selected to have Mini-Mental State Examination (MMSE) scores of at least 10. Participants had a mean age of 81.0 years (range 63-97 years) and had a mean MMSE score of 17.8 (range 10-29). Nurse ratings of disruptive vocalization according to a semioperationalized definition were validated against the noisy behavior subscale of the Cohen-Mansfield Agitation Inventory. Subjects were independently rated for depressive symptoms by a psychiatrist using the Dementia Mood Assessment Scale, the Cornell Scale for Depression in Dementia, and the Depressive Signs Scale. Vocally disruptive nursing home residents scored significantly higher than controls on each of these three depression-in-dementia scales. These differences remained significant when the effects of possible confounding variables of cognitive impairment, age, and sex were removed. We conclude that depressive symptoms are associated with disruptive vocalization and may have an etiological role in the generation of disruptive vocalization behaviors in elderly nursing home residents.
Resumo:
The explosive growth in biotechnology combined with major advancesin information technology has the potential to radically transformimmunology in the postgenomics era. Not only do we now have readyaccess to vast quantities of existing data, but new data with relevanceto immunology are being accumulated at an exponential rate. Resourcesfor computational immunology include biological databases and methodsfor data extraction, comparison, analysis and interpretation. Publiclyaccessible biological databases of relevance to immunologists numberin the hundreds and are growing daily. The ability to efficientlyextract and analyse information from these databases is vital forefficient immunology research. Most importantly, a new generationof computational immunology tools enables modelling of peptide transportby the transporter associated with antigen processing (TAP), modellingof antibody binding sites, identification of allergenic motifs andmodelling of T-cell receptor serial triggering.